Skip to main content

2019 | OriginalPaper | Buchkapitel

6. Passive Prosthetic Ankle and Foot with Glass Fiber Reinforced Plastic: Biomechanical Design, Simulation, and Optimization

verfasst von : Thanh-Phong Dao, Ngoc Le Chau

Erschienen in: Biomaterials in Orthopaedics and Bone Regeneration

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter dedicates an innovative design, analysis, and computational optimization for a novel passive prosthetic ankle and foot 1.0 and 2.0. The glass fiber reinforced plastic material is used as for the proposed prosthesis. The biomechanical design is inspired by the concept of compliant mechanism and bioengineering. Several shapes and topology of the ankle–foot are developed. Then, simulations are conducted to monitor the structural behaviors and dynamic characteristics. Three basic phases, heel strike, midstance, and toe-off, of the prosthesis 1.0 and 2.0 are analyzed by finite element method. The results found that the maximum Von Mises stresses are concentrated on the shank at toe-off. To improve the performance, a hybrid integration of Taguchi method, response surface methodology, and differential evolution algorithm is developed. The Taguchi method is used to construct the number of numerical experiments, and the response surface methodology is utilized to establish the input factors and the output strain energy. Based on the well-established mathematical model, the differential evolution algorithm is applied to the best geometric parameters of the ankle–foot. The result showed that the optimal strain energy is approximately improved 155% compared to initial design. In addition, the optimal energy strain is about 93.914 mJ. The ankle–foot 1.0 and 2.0 can be monolithically manufactured by using 3D printing. The proposed prosthetic ankle–foot may be appropriate for an amputee’s weight of 100 kg.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Grabowski A, D’Andrea S, Herr H (2011) Bionic leg prosthesis emulates biological ankle joint during walking. Proc Ann Meeting Am Soc Biomech, 1–2 Grabowski A, D’Andrea S, Herr H (2011) Bionic leg prosthesis emulates biological ankle joint during walking. Proc Ann Meeting Am Soc Biomech, 1–2
2.
Zurück zum Zitat Casillas JM, Dulieu V, Cohen M, Marcer I, Didier JP (1995) Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations. Arch Phys Med Rehabil 76(1):39–44CrossRef Casillas JM, Dulieu V, Cohen M, Marcer I, Didier JP (1995) Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations. Arch Phys Med Rehabil 76(1):39–44CrossRef
3.
Zurück zum Zitat Rao SS, Boyd LA, Mulroy SJ, Bontrager EL, Gronley J, Perry J (1998) Segment velocities in normal and tarsotibial amputees: prosthetic design implications. Trans Rehabil Eng 6(2):219–226CrossRef Rao SS, Boyd LA, Mulroy SJ, Bontrager EL, Gronley J, Perry J (1998) Segment velocities in normal and tarsotibial amputees: prosthetic design implications. Trans Rehabil Eng 6(2):219–226CrossRef
4.
Zurück zum Zitat Torburn L, Perry J, Ayyappa E, Shanfield SL (1990) Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study. J Rehabil Res Dev 27(4):369CrossRef Torburn L, Perry J, Ayyappa E, Shanfield SL (1990) Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study. J Rehabil Res Dev 27(4):369CrossRef
5.
Zurück zum Zitat Lehmann J, Price R, Boswell-Bessette S, Dralle A, Questad K, DeLateur B (1993) Comprehensive analysis of energy storing prosthetic feet: flex foot and seattle foot versus standard SACH foot. Arch Phys Med Rehabil 74(11):1225–1231 Lehmann J, Price R, Boswell-Bessette S, Dralle A, Questad K, DeLateur B (1993) Comprehensive analysis of energy storing prosthetic feet: flex foot and seattle foot versus standard SACH foot. Arch Phys Med Rehabil 74(11):1225–1231
6.
Zurück zum Zitat Macfarlane PA, Nielsen DH, Shurr DG, Meier K (1991) Gait comparisons for below-knee amputees using a flex-foottm versus a conventional prosthetic foot. J Pros Ortho 3(4):150–161CrossRef Macfarlane PA, Nielsen DH, Shurr DG, Meier K (1991) Gait comparisons for below-knee amputees using a flex-foottm versus a conventional prosthetic foot. J Pros Ortho 3(4):150–161CrossRef
7.
Zurück zum Zitat Postema K, Hermens H, De-Vries J, Koopman H, Eisma W (1997) Energy storage and release of prosthetic feet Part 1: biomechanical analysis related to user benefits. Pros Ortho Int 21(1):17–27 Postema K, Hermens H, De-Vries J, Koopman H, Eisma W (1997) Energy storage and release of prosthetic feet Part 1: biomechanical analysis related to user benefits. Pros Ortho Int 21(1):17–27
8.
Zurück zum Zitat Postema K, Hermens H, De-Vries J, Koopman H, Eisma W (1997) Energy storage and release of prosthetic feet Part 2: subjective ratings of 2 energy storing and 2 conventional feet, user choice of foot and deciding factor. Pros Ortho Int 21(1):28–34 Postema K, Hermens H, De-Vries J, Koopman H, Eisma W (1997) Energy storage and release of prosthetic feet Part 2: subjective ratings of 2 energy storing and 2 conventional feet, user choice of foot and deciding factor. Pros Ortho Int 21(1):28–34
9.
Zurück zum Zitat Linden M, Solomonidis S, Spence W, Li N, Paul J (1999) A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait. J Biomech 32(9):877–889CrossRef Linden M, Solomonidis S, Spence W, Li N, Paul J (1999) A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait. J Biomech 32(9):877–889CrossRef
10.
Zurück zum Zitat Hafner BJ, Sanders JE, Czerniecki J, Fergason J (2002) Energy storage and return prostheses: does patient perception correlate with biomechanical analysis? Clin Biomech 17(5):325–344CrossRef Hafner BJ, Sanders JE, Czerniecki J, Fergason J (2002) Energy storage and return prostheses: does patient perception correlate with biomechanical analysis? Clin Biomech 17(5):325–344CrossRef
11.
Zurück zum Zitat Hafner BJ, Sanders JE, Czerniecki JM, Fergason J (2002) Transtibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature. J Rehabil Res Dev 39(1):1CrossRef Hafner BJ, Sanders JE, Czerniecki JM, Fergason J (2002) Transtibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature. J Rehabil Res Dev 39(1):1CrossRef
12.
Zurück zum Zitat Fey NP, Klute GK, Neptune RR (2011) The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin Biomech 26(10):1025–1032CrossRef Fey NP, Klute GK, Neptune RR (2011) The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin Biomech 26(10):1025–1032CrossRef
13.
Zurück zum Zitat Zmitrewicz RJ, Neptune RR, Sasaki K (2007) Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study. J Biomech 40(8):1824–1831CrossRef Zmitrewicz RJ, Neptune RR, Sasaki K (2007) Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study. J Biomech 40(8):1824–1831CrossRef
14.
Zurück zum Zitat Bedaiwi BA, Chiad JS (2012) Vibration analysis and measurement in the below knee prosthetic limb: part I-experimental work. Proc ASME Int Mech Eng Congr Exposition, 851–858 Bedaiwi BA, Chiad JS (2012) Vibration analysis and measurement in the below knee prosthetic limb: part I-experimental work. Proc ASME Int Mech Eng Congr Exposition, 851–858
15.
Zurück zum Zitat Cherelle P, Grosu V, Matthys A, Vanderborght B, Lefeber D (2014) Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0. Trans Neural Syst Rehabil Eng 22(1):138–148CrossRef Cherelle P, Grosu V, Matthys A, Vanderborght B, Lefeber D (2014) Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0. Trans Neural Syst Rehabil Eng 22(1):138–148CrossRef
16.
Zurück zum Zitat Cherelle P, Grosu V, Van-Damme M, Vanderborght B, Lefeber D (2013) Use of compliant actuators in prosthetic feet and the design of the AMP-foot 2.0. Model Simul Optim Bipedal Walking, 17–30 Cherelle P, Grosu V, Van-Damme M, Vanderborght B, Lefeber D (2013) Use of compliant actuators in prosthetic feet and the design of the AMP-foot 2.0. Model Simul Optim Bipedal Walking, 17–30
17.
Zurück zum Zitat Cherelle P, Junius K, Grosu V, Cuypers H, Vanderborght B, Lefeber D (2014) The amp-foot 2.1: actuator design, control and experiments with an amputee. Robo 32(8):1347–1361CrossRef Cherelle P, Junius K, Grosu V, Cuypers H, Vanderborght B, Lefeber D (2014) The amp-foot 2.1: actuator design, control and experiments with an amputee. Robo 32(8):1347–1361CrossRef
19.
Zurück zum Zitat Starker F, Schneider U, Hansen AH, Childress DS, Pauli J, Pauli C (2015) Artificial ankle, artificial foot and artificial leg. Google Patents Starker F, Schneider U, Hansen AH, Childress DS, Pauli J, Pauli C (2015) Artificial ankle, artificial foot and artificial leg. Google Patents
20.
Zurück zum Zitat Ko CY, Kim SB, Kim JK, Chang Y, Cho H, Kim S, Ryu J, Mun M (2016) Biomechanical features of level walking by transtibial amputees wearing prosthetic feet with and without adaptive ankles. J Mech Sci Technol 30(6):2907–2914CrossRef Ko CY, Kim SB, Kim JK, Chang Y, Cho H, Kim S, Ryu J, Mun M (2016) Biomechanical features of level walking by transtibial amputees wearing prosthetic feet with and without adaptive ankles. J Mech Sci Technol 30(6):2907–2914CrossRef
21.
Zurück zum Zitat Ghaith FA, Khan FA (2012) Nonlinear finite element modeling of prosthetic lower limbs. Proc Int Conf Adv Robo Mech Eng Des. 02.ARMED.2012.2.3 Ghaith FA, Khan FA (2012) Nonlinear finite element modeling of prosthetic lower limbs. Proc Int Conf Adv Robo Mech Eng Des. 02.ARMED.2012.2.3
22.
Zurück zum Zitat Jimenez-Fabian R, Flynn L, Geeroms J, Vitiello N, Vanderborght B, Lefeber D (2015) Sliding-bar MACCEPA for a powered ankle prosthesis. J Mech Rob 7(4):041011CrossRef Jimenez-Fabian R, Flynn L, Geeroms J, Vitiello N, Vanderborght B, Lefeber D (2015) Sliding-bar MACCEPA for a powered ankle prosthesis. J Mech Rob 7(4):041011CrossRef
23.
Zurück zum Zitat Kerkum YL, Al Buizer, Noort JC, Becher JG, Harlaar J, Brehm MA (2015) The effects of varying ankle foot orthosis stiffness on gait in children with spastic cerebral palsy who walk with excessive knee flexion. PLoS ONE 10(11):e0142878CrossRef Kerkum YL, Al Buizer, Noort JC, Becher JG, Harlaar J, Brehm MA (2015) The effects of varying ankle foot orthosis stiffness on gait in children with spastic cerebral palsy who walk with excessive knee flexion. PLoS ONE 10(11):e0142878CrossRef
24.
Zurück zum Zitat Leardini A, O’Connor JJ, Giannini S (2014) Biomechanics of the natural, arthritic, and replaced human ankle joint. J Foot Ankle Res 7(1):8CrossRef Leardini A, O’Connor JJ, Giannini S (2014) Biomechanics of the natural, arthritic, and replaced human ankle joint. J Foot Ankle Res 7(1):8CrossRef
25.
Zurück zum Zitat Noroozi S, Rahman AGA, Dupac M, Vinney JE (2012) Dynamic characteristics of prosthetic feet: a comparison between modal parameters of walking, running and sprinting foot. Adv Mech Design, 339–344 Noroozi S, Rahman AGA, Dupac M, Vinney JE (2012) Dynamic characteristics of prosthetic feet: a comparison between modal parameters of walking, running and sprinting foot. Adv Mech Design, 339–344
26.
Zurück zum Zitat Omasta M, Palousek D, Navrat T, Rosicky J (2012) Finite element analysis for the evaluation of the structural behaviour of a prosthesis for trans-tibial amputees. Med Eng Phys 34(1):38–45CrossRef Omasta M, Palousek D, Navrat T, Rosicky J (2012) Finite element analysis for the evaluation of the structural behaviour of a prosthesis for trans-tibial amputees. Med Eng Phys 34(1):38–45CrossRef
27.
Zurück zum Zitat Rigney SM, Simmons A, Kark L (2015) Concurrent multibody and Finite Element analysis of the lower-limb during amputee running. Proc Eng Med Biol Soc, 2434–2437 Rigney SM, Simmons A, Kark L (2015) Concurrent multibody and Finite Element analysis of the lower-limb during amputee running. Proc Eng Med Biol Soc, 2434–2437
28.
Zurück zum Zitat Veneva I, Vanderborght B, Lefeber D, Cherelle P (2013) Propulsion system with pneumatic artificial muscles for powering ankle-foot orthosis. J Theor Appl Mech 43(4):3–16CrossRef Veneva I, Vanderborght B, Lefeber D, Cherelle P (2013) Propulsion system with pneumatic artificial muscles for powering ankle-foot orthosis. J Theor Appl Mech 43(4):3–16CrossRef
29.
Zurück zum Zitat Casillas JM, Dulieu V, Cohen M, Marcer I, Didier JP (1995) Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations. Arch Phys Med Rehabil 76:39–44CrossRef Casillas JM, Dulieu V, Cohen M, Marcer I, Didier JP (1995) Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations. Arch Phys Med Rehabil 76:39–44CrossRef
30.
Zurück zum Zitat Rao SS, Boyd LA, Mulroy SJ, Bontrager EL, Gronley J, Perry J (1998) Segment velocities in normal and transtibial amputees: prosthetic design implications. Trans Rehabil Eng 6:219–226CrossRef Rao SS, Boyd LA, Mulroy SJ, Bontrager EL, Gronley J, Perry J (1998) Segment velocities in normal and transtibial amputees: prosthetic design implications. Trans Rehabil Eng 6:219–226CrossRef
31.
Zurück zum Zitat Torburn L, Perry J, Ayyappa E, Shanfield SL (1990) Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study. J Rehabil Res Dev 27:369CrossRef Torburn L, Perry J, Ayyappa E, Shanfield SL (1990) Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study. J Rehabil Res Dev 27:369CrossRef
32.
Zurück zum Zitat Lehmann J, Price R, Boswell-Bessette S, Dralle A, Questad K, DeLateur B (1993) Comprehensive analysis of energy storing prosthetic feet: flex foot and seattle foot versus standard SACH foot. Arch Phys Med Rehabil 74:1225–1231CrossRef Lehmann J, Price R, Boswell-Bessette S, Dralle A, Questad K, DeLateur B (1993) Comprehensive analysis of energy storing prosthetic feet: flex foot and seattle foot versus standard SACH foot. Arch Phys Med Rehabil 74:1225–1231CrossRef
33.
Zurück zum Zitat Macfarlane PA, Nielsen DA, Shurr DG, Meier K (1991) Gait comparisons for below-knee amputees using a flex-foot versus a conventional prosthetic foot. J Pros Ortho 3:150–161CrossRef Macfarlane PA, Nielsen DA, Shurr DG, Meier K (1991) Gait comparisons for below-knee amputees using a flex-foot versus a conventional prosthetic foot. J Pros Ortho 3:150–161CrossRef
34.
Zurück zum Zitat Au S, Berniker M, Herr H (2008) Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw 21:654–666CrossRef Au S, Berniker M, Herr H (2008) Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw 21:654–666CrossRef
35.
Zurück zum Zitat Sun J, Voglewede PA (2014) Powered transtibial prosthetic device control system design, implementation, and bench testing. J Med Devices 8:011004CrossRef Sun J, Voglewede PA (2014) Powered transtibial prosthetic device control system design, implementation, and bench testing. J Med Devices 8:011004CrossRef
36.
Zurück zum Zitat Collins SH, Kuo AD (2010) Recycling energy to restore impaired ankle function during human walking. PLoS ONE 5:e9307CrossRef Collins SH, Kuo AD (2010) Recycling energy to restore impaired ankle function during human walking. PLoS ONE 5:e9307CrossRef
37.
Zurück zum Zitat Howell LL, Magleby SP, Olsen BM (2013) Handbook of compliant mechanisms. Wiley Howell LL, Magleby SP, Olsen BM (2013) Handbook of compliant mechanisms. Wiley
38.
Zurück zum Zitat Dao TP, Huang SC (2015) Design, fabrication, and predictive model of a 1-dof translational, flexible bearing for high precision mechanism. Trans Canad Soc Mech Eng 39(3):419–429CrossRef Dao TP, Huang SC (2015) Design, fabrication, and predictive model of a 1-dof translational, flexible bearing for high precision mechanism. Trans Canad Soc Mech Eng 39(3):419–429CrossRef
39.
Zurück zum Zitat Dao TP, Huang SC (2017) Compliant thin-walled joint based on zygoptera nonlinear geometry. J Mech Sci Technol 31(3):1293–1303CrossRef Dao TP, Huang SC (2017) Compliant thin-walled joint based on zygoptera nonlinear geometry. J Mech Sci Technol 31(3):1293–1303CrossRef
41.
Zurück zum Zitat Huang SC, Dao TP (2016) Design and computational optimization of a flexure-based XY positioning platform using FEA-based response surface methodology. Int J Precis Eng Manuf 17(8):1035–1048CrossRef Huang SC, Dao TP (2016) Design and computational optimization of a flexure-based XY positioning platform using FEA-based response surface methodology. Int J Precis Eng Manuf 17(8):1035–1048CrossRef
42.
Zurück zum Zitat Dao TP, Huang SC (2016) Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper. Microsyst Technol, 1–16 Dao TP, Huang SC (2016) Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper. Microsyst Technol, 1–16
43.
Zurück zum Zitat Huang SC, Dao TP (2016) Multi-objective optimal design of a 2-DOF flexure-based mechanism using hybrid approach of grey-taguchi coupled response surface methodology and entropy measurement. Arabian J Sci Eng 41(12):5215–5231CrossRef Huang SC, Dao TP (2016) Multi-objective optimal design of a 2-DOF flexure-based mechanism using hybrid approach of grey-taguchi coupled response surface methodology and entropy measurement. Arabian J Sci Eng 41(12):5215–5231CrossRef
44.
Zurück zum Zitat Dhote S, Jean Z, Yang Z (2015) A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring. Appl Phys Lett 106(16):163903CrossRef Dhote S, Jean Z, Yang Z (2015) A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring. Appl Phys Lett 106(16):163903CrossRef
45.
Zurück zum Zitat Dhote S, Zhengbao Y, Jean Z (2018) Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester. Mech Syst Sig Process 98:268–280CrossRef Dhote S, Zhengbao Y, Jean Z (2018) Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester. Mech Syst Sig Process 98:268–280CrossRef
46.
Zurück zum Zitat Bains PS, Singh S, Sidhu SS, Kaur S, Ablyaz TR (2018) Investigation of surface properties of Al–SiC composites in hybrid electrical discharge machining. In: Futuristic composites. Springer, Berlin, pp 181–196CrossRef Bains PS, Singh S, Sidhu SS, Kaur S, Ablyaz TR (2018) Investigation of surface properties of Al–SiC composites in hybrid electrical discharge machining. In: Futuristic composites. Springer, Berlin, pp 181–196CrossRef
47.
Zurück zum Zitat Bhui AS, Singh G, Sidhu SS, Bains PS (2018) Experimental investigation of optimal ED machining parameters for Ti-6Al-4 V biomaterial. FU Ser Mech Eng 16(3):337–345CrossRef Bhui AS, Singh G, Sidhu SS, Bains PS (2018) Experimental investigation of optimal ED machining parameters for Ti-6Al-4 V biomaterial. FU Ser Mech Eng 16(3):337–345CrossRef
48.
Zurück zum Zitat Sidhu SS, Bains PS, Yazdani M, Zolfaniab SH (2018) Application of MCDM techniques on nonconventional machining of composites. In: Futuristic composites. Springer, Berlin, pp 127–144CrossRef Sidhu SS, Bains PS, Yazdani M, Zolfaniab SH (2018) Application of MCDM techniques on nonconventional machining of composites. In: Futuristic composites. Springer, Berlin, pp 127–144CrossRef
49.
Zurück zum Zitat Nguyen TT, Dao TP, Huang SC (2017) Biomechanical design of a novel six dof compliant prosthetic ankle-foot 2.0 for rehabilitation of amputee. ASME Int Des Eng Tech Conf Comp Info Eng, V05AT08A013–V05AT08A013 Nguyen TT, Dao TP, Huang SC (2017) Biomechanical design of a novel six dof compliant prosthetic ankle-foot 2.0 for rehabilitation of amputee. ASME Int Des Eng Tech Conf Comp Info Eng, V05AT08A013–V05AT08A013
50.
Zurück zum Zitat Nguyen TT, Le HG, Dao TP, Huang SC (2017) Evaluation of structural behaviour of a novel compliant prosthetic ankle-foot. IEEE Int Conf Mech Sys Cont Eng, 58–62 Nguyen TT, Le HG, Dao TP, Huang SC (2017) Evaluation of structural behaviour of a novel compliant prosthetic ankle-foot. IEEE Int Conf Mech Sys Cont Eng, 58–62
Metadaten
Titel
Passive Prosthetic Ankle and Foot with Glass Fiber Reinforced Plastic: Biomechanical Design, Simulation, and Optimization
verfasst von
Thanh-Phong Dao
Ngoc Le Chau
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-9977-0_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.