Skip to main content
Erschienen in:

30.10.2018

Path Travel Time Estimating Method by Incomplete Traffic Data

verfasst von: Ryuichi Tani, Takashi Owada, Kenetsu Uchida

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study proposes a method estimating stochastic path travel times by using both traffic counter data and probe car data complementarily. A stochastic traffic demand for each O-D pair in a road network is estimated by maximum likelihood estimation with respect to traffic counter data. Stochastic path travel times are addressed as a prior multivariate path travel time distribution. The estimated stochastic path travel time is updated by applying Bayesian inference using observed probe car data. The updated path travel time can be regarded as a posterior multivariate path travel time distribution. Numerical experiments demonstrate inference processes of path travel time and verify our proposed model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Dion, F., Rakha, H.: Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates. Transp. Res. B. 40(9), 745–766 (2006)CrossRef Dion, F., Rakha, H.: Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates. Transp. Res. B. 40(9), 745–766 (2006)CrossRef
2.
Zurück zum Zitat Dominici, F., Parmigiani, G., Clyde, M.: Conjugate analysis of multivariate normal data with incomplete observations. Can. J. Stat. 28(3), 533–550 (2000)MathSciNetCrossRef Dominici, F., Parmigiani, G., Clyde, M.: Conjugate analysis of multivariate normal data with incomplete observations. Can. J. Stat. 28(3), 533–550 (2000)MathSciNetCrossRef
3.
Zurück zum Zitat Feng, Y., Hourdos, J., Davis, G.A.: Probe vehicle based real-time traffic monitoring on urban roadways. Transp. Res. C. 40, 160–178 (2014)CrossRef Feng, Y., Hourdos, J., Davis, G.A.: Probe vehicle based real-time traffic monitoring on urban roadways. Transp. Res. C. 40, 160–178 (2014)CrossRef
4.
Zurück zum Zitat Hazelton, M.L.: Bayesian inference for network-based models with a linear inverse structure. Transp. Res. B. 44(5), 674–685 (2010)CrossRef Hazelton, M.L.: Bayesian inference for network-based models with a linear inverse structure. Transp. Res. B. 44(5), 674–685 (2010)CrossRef
5.
Zurück zum Zitat Hofleitner, A., Herring, R., Bayen, A.: Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning. Transp. Res. B. 46(9), 1097–1122 (2012)CrossRef Hofleitner, A., Herring, R., Bayen, A.: Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning. Transp. Res. B. 46(9), 1097–1122 (2012)CrossRef
6.
Zurück zum Zitat Jenelius, E., Koutsopoulos, H.N.: Travel time estimation for urban road networks using low frequency probe vehicle data. Transp. Res. B. 53, 64–81 (2013)CrossRef Jenelius, E., Koutsopoulos, H.N.: Travel time estimation for urban road networks using low frequency probe vehicle data. Transp. Res. B. 53, 64–81 (2013)CrossRef
7.
Zurück zum Zitat Liu, H.X., Ma, W.: A virtual vehicle probe model for time-dependent travel time estimation on signalized arterials. Transp. Res. C. 17(1), 11–26 (2009)CrossRef Liu, H.X., Ma, W.: A virtual vehicle probe model for time-dependent travel time estimation on signalized arterials. Transp. Res. C. 17(1), 11–26 (2009)CrossRef
8.
Zurück zum Zitat Parry, K., Hazelton, M.L.: Bayesian inference for day-to-day dynamic traffic models. Transp. Res. B. 50, 104–115 (2013)CrossRef Parry, K., Hazelton, M.L.: Bayesian inference for day-to-day dynamic traffic models. Transp. Res. B. 50, 104–115 (2013)CrossRef
9.
Zurück zum Zitat Rahmani, M., Jenelius, E., Koutsopoulos, H.N.: Non-parametric estimation of route travel time distributions from low-frequency floating car data. Transp. Res. C. 58, 343–362 (2015)CrossRef Rahmani, M., Jenelius, E., Koutsopoulos, H.N.: Non-parametric estimation of route travel time distributions from low-frequency floating car data. Transp. Res. C. 58, 343–362 (2015)CrossRef
10.
Zurück zum Zitat Rahmani, M., Koutsopoulos, H., Jenelius, E.: Travel time estimation from sparse floating car data with consistent path inference: a fixed point approach. Transp. Res. C. 85, 628–643 (2017)CrossRef Rahmani, M., Koutsopoulos, H., Jenelius, E.: Travel time estimation from sparse floating car data with consistent path inference: a fixed point approach. Transp. Res. C. 85, 628–643 (2017)CrossRef
11.
Zurück zum Zitat Ramezani, M., Geroliminis, N.: On the estimation of arterial route travel time distribution with Markov chains. Transp. Res. B. 46(10), 1576–1590 (2012)CrossRef Ramezani, M., Geroliminis, N.: On the estimation of arterial route travel time distribution with Markov chains. Transp. Res. B. 46(10), 1576–1590 (2012)CrossRef
12.
Zurück zum Zitat Uchida, K.: Travel time reliability estimation model using observed link flows in a road network: travel time reliability estimation model using observed link flows in a road network. Comput-Aided Civ Inf. 30(6), 449–463 (2015)CrossRef Uchida, K.: Travel time reliability estimation model using observed link flows in a road network: travel time reliability estimation model using observed link flows in a road network. Comput-Aided Civ Inf. 30(6), 449–463 (2015)CrossRef
13.
Zurück zum Zitat Uchida, K., Kato, T.: A simplified network model for travel time reliability analysis in a road network. J. Adv. Transp. 2017, 1–17 (2017)CrossRef Uchida, K., Kato, T.: A simplified network model for travel time reliability analysis in a road network. J. Adv. Transp. 2017, 1–17 (2017)CrossRef
14.
Zurück zum Zitat Wei, C., Asakura, Y.: A Bayesian approach to traffic estimation in stochastic user equilibrium networks. Transp. Res. C. 36, 446–459 (2013)CrossRef Wei, C., Asakura, Y.: A Bayesian approach to traffic estimation in stochastic user equilibrium networks. Transp. Res. C. 36, 446–459 (2013)CrossRef
15.
Zurück zum Zitat Zheng, F., Van Zuylen, H.: Urban link travel time estimation based on sparse probe vehicle data. Transp. Res. C. 31, 145–157 (2013)CrossRef Zheng, F., Van Zuylen, H.: Urban link travel time estimation based on sparse probe vehicle data. Transp. Res. C. 31, 145–157 (2013)CrossRef
Metadaten
Titel
Path Travel Time Estimating Method by Incomplete Traffic Data
verfasst von
Ryuichi Tani
Takashi Owada
Kenetsu Uchida
Publikationsdatum
30.10.2018
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 1/2020
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-018-0168-4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.