Skip to main content

07.12.2018 | Special Issue: HTSMA 2018, Invited Paper

Pathways Towards Grain Boundary Engineering for Improved Structural Performance in Polycrystalline Co–Ni–Ga Shape Memory Alloys

verfasst von: C. Lauhoff, M. Vollmer, P. Krooß, I. Kireeva, Y. I. Chumlyakov, T. Niendorf

Erschienen in: Shape Memory and Superelasticity

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, Co–Ni–Ga high-temperature shape memory alloys (HT-SMAs) attracted a lot of scientific attention due to their superior functional material properties. In the single-crystalline state, Co–Ni–Ga HT-SMAs feature a good pseudoelastic response up to 500 °C. However, in the polycrystalline condition Co–Ni–Ga suffers significant grain constraints and premature fracture at grain boundaries. In this regard, crystallographic orientations of the grains being involved as well as morphology and geometrical orientation of the grain boundaries with respect to the loading direction under pseudoelastic deformation are expected to be of crucial importance. Therefore, this study addresses the structural integrity of engineered grain boundaries, i.e., specifically selected grain boundaries in terms of orientation, grain boundary morphology, and crystallographic grain orientations of adjacent grains. Mechanical tests combined with in situ methods and post-mortem scanning electron microscopy investigations are used to shed light on the prevailing microstructural features resulting in any kind of structural degradation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lagoudas DC (2008) Shape Mem Alloys. Springer, US, Boston, MA Lagoudas DC (2008) Shape Mem Alloys. Springer, US, Boston, MA
2.
Zurück zum Zitat Otsuka K, Wayman CM (eds) (1999) Shape memory materials, 1st edn. Cambridge University Press, Cambridge Otsuka K, Wayman CM (eds) (1999) Shape memory materials, 1st edn. Cambridge University Press, Cambridge
3.
Zurück zum Zitat Firstov GS, van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys. Mater Sci Eng A 378:2–10CrossRef Firstov GS, van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys. Mater Sci Eng A 378:2–10CrossRef
4.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2013) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef Ma J, Karaman I, Noebe RD (2013) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef
5.
Zurück zum Zitat Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater 57:2509–2515CrossRef Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater 57:2509–2515CrossRef
6.
Zurück zum Zitat Sehitoglu H, Patriarca L, Wu Y (2017) Shape memory strains and temperatures in the extreme. Curr Opin Solid State Mater Sci 21:113–120CrossRef Sehitoglu H, Patriarca L, Wu Y (2017) Shape memory strains and temperatures in the extreme. Curr Opin Solid State Mater Sci 21:113–120CrossRef
7.
Zurück zum Zitat Reul A, Lauhoff C, Krooß P, Gutmann MJ, Kadletz PM, Chumlyakov YI, Niendorf T et al (2018) In situ neutron diffraction analyzing stress-induced phase transformation and martensite Elasticity in [001]-Oriented Co49Ni21Ga30 shape memory alloy single crystals. Shape Mem Superelast 4:61–69CrossRef Reul A, Lauhoff C, Krooß P, Gutmann MJ, Kadletz PM, Chumlyakov YI, Niendorf T et al (2018) In situ neutron diffraction analyzing stress-induced phase transformation and martensite Elasticity in [001]-Oriented Co49Ni21Ga30 shape memory alloy single crystals. Shape Mem Superelast 4:61–69CrossRef
8.
Zurück zum Zitat Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59:1168–1183CrossRef Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59:1168–1183CrossRef
9.
Zurück zum Zitat Brown PJ, Ishida K, Kainuma R, Kanomata T, Neumann K-U, Oikawa K, Ouladdiaf B et al (2005) Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co–Ni–Al and Co–Ni–Ga. J Phys 17:1301–1310 Brown PJ, Ishida K, Kainuma R, Kanomata T, Neumann K-U, Oikawa K, Ouladdiaf B et al (2005) Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co–Ni–Al and Co–Ni–Ga. J Phys 17:1301–1310
10.
Zurück zum Zitat Liu J, Xie H, Huo Y, Zheng H, Li J (2006) Microstructure evolution in CoNiGa shape memory alloys. J Alloys Compd 420:145–157CrossRef Liu J, Xie H, Huo Y, Zheng H, Li J (2006) Microstructure evolution in CoNiGa shape memory alloys. J Alloys Compd 420:145–157CrossRef
11.
Zurück zum Zitat Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2006) Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scr Mater 55:663–666CrossRef Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2006) Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scr Mater 55:663–666CrossRef
12.
Zurück zum Zitat Monroe JA, Karaman I, Karaca HE, Chumlyakov YI, Maier HJ (2010) High-temperature superelasticity and competing microstructural mechanisms in Co49Ni21Ga30 shape memory alloy single crystals under tension. Scr Mater 62:368–371CrossRef Monroe JA, Karaman I, Karaca HE, Chumlyakov YI, Maier HJ (2010) High-temperature superelasticity and competing microstructural mechanisms in Co49Ni21Ga30 shape memory alloy single crystals under tension. Scr Mater 62:368–371CrossRef
13.
Zurück zum Zitat Kireeva IV, Picornell C, Pons J, Kretinina IV, Chumlyakov YI, Cesari E (2014) Effect of oriented γ′ precipitates on shape memory effect and superelasticity in Co–Ni–Ga single crystals. Acta Mater 68:127–139CrossRef Kireeva IV, Picornell C, Pons J, Kretinina IV, Chumlyakov YI, Cesari E (2014) Effect of oriented γ′ precipitates on shape memory effect and superelasticity in Co–Ni–Ga single crystals. Acta Mater 68:127–139CrossRef
14.
Zurück zum Zitat Kireeva IV, Pons J, Picornell C, Chumlyakov YI, Cesari E, Kretinina IV (2013) Influence of γ′ nanometric particles on martensitic transformation and twinning structure of L10 martensite in Co–Ni–Ga ferromagnetic shape memory single crystals. Intermetallics 35:60–66CrossRef Kireeva IV, Pons J, Picornell C, Chumlyakov YI, Cesari E, Kretinina IV (2013) Influence of γ′ nanometric particles on martensitic transformation and twinning structure of L10 martensite in Co–Ni–Ga ferromagnetic shape memory single crystals. Intermetallics 35:60–66CrossRef
15.
Zurück zum Zitat Niendorf T, Dadda J, Lackmann J, Monroe JA, Karaman I, Panchenko E, Karaca HE et al (2013) Tension-compression asymmetry in Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Mater Sci Forum 738–739:82–86CrossRef Niendorf T, Dadda J, Lackmann J, Monroe JA, Karaman I, Panchenko E, Karaca HE et al (2013) Tension-compression asymmetry in Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Mater Sci Forum 738–739:82–86CrossRef
16.
Zurück zum Zitat Krooß P, Niendorf T, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW et al (2015) Functional fatigue and tension-compression asymmetry in [001]-Oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shape Mem Superelast 1:6–17CrossRef Krooß P, Niendorf T, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW et al (2015) Functional fatigue and tension-compression asymmetry in [001]-Oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shape Mem Superelast 1:6–17CrossRef
17.
Zurück zum Zitat Dadda J, Maier HJ, Niklasch D, Karaman I, Karaca HE, Chumlyakov YI (2008) Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall Mat Trans A 39:2026–2039CrossRef Dadda J, Maier HJ, Niklasch D, Karaman I, Karaca HE, Chumlyakov YI (2008) Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall Mat Trans A 39:2026–2039CrossRef
18.
Zurück zum Zitat Krooß P, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW, Maier HJ et al (2016) Cyclic degradation of Co49Ni21Ga30 high-temperature shape memory alloy. Shape Mem Superelast 2:37–49CrossRef Krooß P, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW, Maier HJ et al (2016) Cyclic degradation of Co49Ni21Ga30 high-temperature shape memory alloy. Shape Mem Superelast 2:37–49CrossRef
19.
Zurück zum Zitat Vollmer M, Krooß P, Segel C, Weidner A, Paulsen A, Frenzel J, Schaper M et al (2015) Damage evolution in pseudoelastic polycrystalline Co–Ni–Ga high-temperature shape memory alloys. J Alloys Compd 633:288–295CrossRef Vollmer M, Krooß P, Segel C, Weidner A, Paulsen A, Frenzel J, Schaper M et al (2015) Damage evolution in pseudoelastic polycrystalline Co–Ni–Ga high-temperature shape memory alloys. J Alloys Compd 633:288–295CrossRef
20.
Zurück zum Zitat Dar RD, Yan H, Chen Y (2016) Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase. Scr Mater 115:113–117CrossRef Dar RD, Yan H, Chen Y (2016) Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase. Scr Mater 115:113–117CrossRef
21.
Zurück zum Zitat Ishida K, Kainuma R, Ueno N, Nishizawa T (1991) Ductility enhancement in NiAl (B2)-base alloys by microstructural control. Metall Trans A 22:441–446CrossRef Ishida K, Kainuma R, Ueno N, Nishizawa T (1991) Ductility enhancement in NiAl (B2)-base alloys by microstructural control. Metall Trans A 22:441–446CrossRef
22.
Zurück zum Zitat Kainuma R, Ishida K, Nishizawa T (1992) Thermoelastic martensite and shape memory effect in B2 Base Ni-Al-Fe alloy with enhanced ductility. Metall Trans A 23:1147–1153CrossRef Kainuma R, Ishida K, Nishizawa T (1992) Thermoelastic martensite and shape memory effect in B2 Base Ni-Al-Fe alloy with enhanced ductility. Metall Trans A 23:1147–1153CrossRef
23.
Zurück zum Zitat Vollmer M, Segel C, Krooß P, Günther J, Tseng LW, Karaman I, Weidner A et al (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys. Scr Mater 108:23–26CrossRef Vollmer M, Segel C, Krooß P, Günther J, Tseng LW, Karaman I, Weidner A et al (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys. Scr Mater 108:23–26CrossRef
24.
Zurück zum Zitat Ueland SM, Schuh CA (2013) Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. J Appl Phys 114:53503CrossRef Ueland SM, Schuh CA (2013) Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. J Appl Phys 114:53503CrossRef
25.
Zurück zum Zitat Ueland SM, Schuh CA (2012) Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater 60:282–292CrossRef Ueland SM, Schuh CA (2012) Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater 60:282–292CrossRef
26.
Zurück zum Zitat Ueland SM, Chen Y, Schuh CA (2012) Oligocrystalline Shape Memory Alloys. Adv Funct Mater 22:2094–2099CrossRef Ueland SM, Chen Y, Schuh CA (2012) Oligocrystalline Shape Memory Alloys. Adv Funct Mater 22:2094–2099CrossRef
27.
Zurück zum Zitat Kusama T, Omori T, Saito T, Kise S, Tanaka T, Araki Y, Kainuma R (2017) Ultra-large single crystals by abnormal grain growth. Nat Commun 8:354CrossRef Kusama T, Omori T, Saito T, Kise S, Tanaka T, Araki Y, Kainuma R (2017) Ultra-large single crystals by abnormal grain growth. Nat Commun 8:354CrossRef
28.
Zurück zum Zitat Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502CrossRef Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502CrossRef
29.
Zurück zum Zitat Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K (2005) Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater 53:4121–4133CrossRef Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K (2005) Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater 53:4121–4133CrossRef
30.
Zurück zum Zitat Sutou Y, Omori T, Wang JJ, Kainuma R, Ishida K (2003) Effect of grain size and texture on superelasticity of Cu-AI-Mn-based shape memory alloys. J Phys IV France 112:511–514CrossRef Sutou Y, Omori T, Wang JJ, Kainuma R, Ishida K (2003) Effect of grain size and texture on superelasticity of Cu-AI-Mn-based shape memory alloys. J Phys IV France 112:511–514CrossRef
31.
Zurück zum Zitat Sutou Y, Omori T, Kainuma R, Ishida K (2013) Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater 61:3842–3850CrossRef Sutou Y, Omori T, Kainuma R, Ishida K (2013) Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater 61:3842–3850CrossRef
32.
Zurück zum Zitat Omori T, Ando K, Okano M, Xu X, Tanaka Y, Ohnuma I, Kainuma R et al (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333:68–71CrossRef Omori T, Ando K, Okano M, Xu X, Tanaka Y, Ohnuma I, Kainuma R et al (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333:68–71CrossRef
33.
Zurück zum Zitat Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269CrossRef Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269CrossRef
34.
Zurück zum Zitat Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Mater 1:32103CrossRef Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Mater 1:32103CrossRef
35.
Zurück zum Zitat Vollmer M, Krooß P, Karaman I, Niendorf T (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scr Mater 126:20–23CrossRef Vollmer M, Krooß P, Karaman I, Niendorf T (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scr Mater 126:20–23CrossRef
36.
Zurück zum Zitat Liu JL, Huang HY, Xie JX (2014) The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys. Mater Des 64:427–433CrossRef Liu JL, Huang HY, Xie JX (2014) The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys. Mater Des 64:427–433CrossRef
37.
Zurück zum Zitat Liu JL, Huang HY, Xie JX, Xu S, Li F (2017) Superelastic fatigue of columnar-grained Cu-Al-Mn shape memory alloy under cyclic tension at high strain. Scr Mater 136:106–110CrossRef Liu JL, Huang HY, Xie JX, Xu S, Li F (2017) Superelastic fatigue of columnar-grained Cu-Al-Mn shape memory alloy under cyclic tension at high strain. Scr Mater 136:106–110CrossRef
38.
Zurück zum Zitat Niendorf T, Krooß P, Somsen C, Eggeler G, Chumlyakov YI, Maier HJ (2015) Martensite aging—avenue to new high temperature shape memory alloys. Acta Mater 89:298–304CrossRef Niendorf T, Krooß P, Somsen C, Eggeler G, Chumlyakov YI, Maier HJ (2015) Martensite aging—avenue to new high temperature shape memory alloys. Acta Mater 89:298–304CrossRef
39.
Zurück zum Zitat Chumlyakov Y, Panchenko E, Kireeva I, Karaman I, Sehitoglu H, Maier HJ, Tverdokhlebova A et al (2008) Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals. Mater Sci Eng A 481–482:95–100CrossRef Chumlyakov Y, Panchenko E, Kireeva I, Karaman I, Sehitoglu H, Maier HJ, Tverdokhlebova A et al (2008) Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals. Mater Sci Eng A 481–482:95–100CrossRef
40.
Zurück zum Zitat J. Dadda (2009) Thermomechanical and Microstructural Characterization of Co49Ni21Ga30 and Co38Ni33Al29 High-temperature Shape Memory Alloy Single Crystals. Thesis, Paderborn University J. Dadda (2009) Thermomechanical and Microstructural Characterization of Co49Ni21Ga30 and Co38Ni33Al29 High-temperature Shape Memory Alloy Single Crystals. Thesis, Paderborn University
41.
Zurück zum Zitat Dadda J, J-rgen Maier H, Karaman I, Chumlyakov Y (2010) High-temperature in situ microscopy during stress-induced phase transformations in Co 49 Ni 21 Ga 30 shape memory alloy single crystals. Int J Mater Res 101:1–11CrossRef Dadda J, J-rgen Maier H, Karaman I, Chumlyakov Y (2010) High-temperature in situ microscopy during stress-induced phase transformations in Co 49 Ni 21 Ga 30 shape memory alloy single crystals. Int J Mater Res 101:1–11CrossRef
42.
Zurück zum Zitat Omori T, Abe S, Tanaka Y, Lee DY, Ishida K, Kainuma R (2013) Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr Mater 69:812–815CrossRef Omori T, Abe S, Tanaka Y, Lee DY, Ishida K, Kainuma R (2013) Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr Mater 69:812–815CrossRef
Metadaten
Titel
Pathways Towards Grain Boundary Engineering for Improved Structural Performance in Polycrystalline Co–Ni–Ga Shape Memory Alloys
verfasst von
C. Lauhoff
M. Vollmer
P. Krooß
I. Kireeva
Y. I. Chumlyakov
T. Niendorf
Publikationsdatum
07.12.2018
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-018-00204-3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.