Skip to main content

2011 | OriginalPaper | Buchkapitel

Patterning and Optical Properties of Materials at the Nanoscale

verfasst von : Noemí Pérez, Ainara Rodríguez, Santiago M. Olaizola

Erschienen in: Fabrication and Characterization in the Micro-Nano Range

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The discovery of novel material properties at the nanoscale has aroused a great amount of interest in the fabrication of structures at the sub-micro and nano scales. In this chapter the most promising non-conventional sub-micro and nano fabrication techniques together with the optical characterization techniques which have been developed in recent years to address the novel photonic and plasmonic properties of structured materials are revised.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thomas, G., Hutten, A.: Characterization of nano-magnetic structures. Nanostruct. Mater. 9, 271–280 (1997)CrossRef Thomas, G., Hutten, A.: Characterization of nano-magnetic structures. Nanostruct. Mater. 9, 271–280 (1997)CrossRef
2.
Zurück zum Zitat Kung, H.H., Kung, M.C.: Nanotechnology: applications and potentials for heterogeneous catalysis. Catal. Today 97, 219–224 (2004)CrossRef Kung, H.H., Kung, M.C.: Nanotechnology: applications and potentials for heterogeneous catalysis. Catal. Today 97, 219–224 (2004)CrossRef
3.
Zurück zum Zitat Ovid’ko, I.A.: Deformation of nanostructures. Science 295, 2386 (2002)CrossRef Ovid’ko, I.A.: Deformation of nanostructures. Science 295, 2386 (2002)CrossRef
4.
Zurück zum Zitat Atwater, H.A.: The promise of plasmonics. Sci. Am. 296(4), 56–63 (2007)CrossRef Atwater, H.A.: The promise of plasmonics. Sci. Am. 296(4), 56–63 (2007)CrossRef
5.
Zurück zum Zitat Sahoo, S.K., Parveen, S., Panda, J.J.: The present and future of nanotechnology in human health care. Nanomed. Nanotechnol. Biol. Med. 3, 20–31 (2007)CrossRef Sahoo, S.K., Parveen, S., Panda, J.J.: The present and future of nanotechnology in human health care. Nanomed. Nanotechnol. Biol. Med. 3, 20–31 (2007)CrossRef
6.
Zurück zum Zitat Serrano, E., Rus, G., García-Martínez, J.: Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 13, 2373–2384 (2009)CrossRef Serrano, E., Rus, G., García-Martínez, J.: Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 13, 2373–2384 (2009)CrossRef
7.
Zurück zum Zitat Brown, P., Stevens, K.: Nanofibers and Nanotechnology in Textiles. Woodhead, Cambridge (2007)CrossRef Brown, P., Stevens, K.: Nanofibers and Nanotechnology in Textiles. Woodhead, Cambridge (2007)CrossRef
9.
Zurück zum Zitat ITRS: International technology roadmap for semiconductors (2007) ITRS: International technology roadmap for semiconductors (2007)
10.
Zurück zum Zitat Rius, G.: Electron Beam Lithography for Nanofabrication. PhD thesis, Universidad Autónoma de Barcelona (2008) Rius, G.: Electron Beam Lithography for Nanofabrication. PhD thesis, Universidad Autónoma de Barcelona (2008)
11.
Zurück zum Zitat Reyntjens, S., Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287–300 (2001)CrossRef Reyntjens, S., Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287–300 (2001)CrossRef
12.
Zurück zum Zitat Matsui, S., Ochiai, Y.: Focused ion beam applications to solid state devices. Nanotechnology 7, 247–258 (1996)CrossRef Matsui, S., Ochiai, Y.: Focused ion beam applications to solid state devices. Nanotechnology 7, 247–258 (1996)CrossRef
13.
Zurück zum Zitat Kim, D.Y., Tripathy, S.K., Li, L., Kumar, J.: Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett. 66, 1166–1168 (1995)CrossRef Kim, D.Y., Tripathy, S.K., Li, L., Kumar, J.: Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett. 66, 1166–1168 (1995)CrossRef
14.
Zurück zum Zitat Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Nanoimprint lithography. J. Vacuum Sci. Technol. B 14, 4129–4133 (1996)CrossRef Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Nanoimprint lithography. J. Vacuum Sci. Technol. B 14, 4129–4133 (1996)CrossRef
15.
Zurück zum Zitat Hulteen, J.C., Van Duyne, R.P.: Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 13, 1553–1558 (1995)CrossRef Hulteen, J.C., Van Duyne, R.P.: Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 13, 1553–1558 (1995)CrossRef
16.
Zurück zum Zitat Haisma, J., Verheijen, M., van den Heuvel, K., van den Berg, J.: Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Technol. B 14, 4124–4128 (1996)CrossRef Haisma, J., Verheijen, M., van den Heuvel, K., van den Berg, J.: Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Technol. B 14, 4124–4128 (1996)CrossRef
17.
Zurück zum Zitat Lasagni, A., Holzapfel, C., Mücklich, F.: Production of two-dimensional periodical structures by laser interference irradiation on bi-layered metallic thin films. Appl. Surface Sci. 253, 1555–1560 (2006)CrossRef Lasagni, A., Holzapfel, C., Mücklich, F.: Production of two-dimensional periodical structures by laser interference irradiation on bi-layered metallic thin films. Appl. Surface Sci. 253, 1555–1560 (2006)CrossRef
18.
Zurück zum Zitat Rodriguez, A., Echeverria, M., Ellman, M., Perez, N., Verevkin, Y.K., Peng, C.S., Berthou, T., Wang, Z., Ayerdi, I., Savall, J., Olaizola, S.M.: Laser interference lithography for nanoscale structuring of materials: from laboratory to industry. Microelectron. Eng. 86, 937–940 (2009)CrossRef Rodriguez, A., Echeverria, M., Ellman, M., Perez, N., Verevkin, Y.K., Peng, C.S., Berthou, T., Wang, Z., Ayerdi, I., Savall, J., Olaizola, S.M.: Laser interference lithography for nanoscale structuring of materials: from laboratory to industry. Microelectron. Eng. 86, 937–940 (2009)CrossRef
19.
Zurück zum Zitat Jiang, P., Bertone, J., Hwang, K., Colvin, V.: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999)CrossRef Jiang, P., Bertone, J., Hwang, K., Colvin, V.: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999)CrossRef
20.
Zurück zum Zitat Sözüer, H.S., Haus, J.W., Inguva, R.: Photonic bands: convergence problems with the plane-wave method. Phys. Rev. B 45, 13962–13972 (1992)CrossRef Sözüer, H.S., Haus, J.W., Inguva, R.: Photonic bands: convergence problems with the plane-wave method. Phys. Rev. B 45, 13962–13972 (1992)CrossRef
21.
Zurück zum Zitat Norris, D.J., Vlasov, Y.A.: Chemical approaches to three-dimensional semiconductor photonic crystals. Adv. Mater. 13, 371–376 (2001)CrossRef Norris, D.J., Vlasov, Y.A.: Chemical approaches to three-dimensional semiconductor photonic crystals. Adv. Mater. 13, 371–376 (2001)CrossRef
22.
Zurück zum Zitat Galisteo López, J.F., García-Santamaría, F., Golmayo, D., Juárez, B., López, C., Palacios, E.: Self-assembly approach to optical metamaterials. J. Opt. A Pure Appl. Opt. 7, S244–S254 (2005)CrossRef Galisteo López, J.F., García-Santamaría, F., Golmayo, D., Juárez, B., López, C., Palacios, E.: Self-assembly approach to optical metamaterials. J. Opt. A Pure Appl. Opt. 7, S244–S254 (2005)CrossRef
23.
Zurück zum Zitat Xia, Y., Gates, B., Yin, Y., Lu, Y.: Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693–713 (2000)CrossRef Xia, Y., Gates, B., Yin, Y., Lu, Y.: Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693–713 (2000)CrossRef
24.
Zurück zum Zitat Vickreva, O., Kalinina, O., Kumacheva, E.: Colloid crystal growth under oscillatory shear. Adv. Mater. 12, 110–112 (2000)CrossRef Vickreva, O., Kalinina, O., Kumacheva, E.: Colloid crystal growth under oscillatory shear. Adv. Mater. 12, 110–112 (2000)CrossRef
25.
Zurück zum Zitat Mihi, A., Ocaña, M., Míguez, H.: Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv. Mater. 18, 2244–2249 (2006)CrossRef Mihi, A., Ocaña, M., Míguez, H.: Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv. Mater. 18, 2244–2249 (2006)CrossRef
26.
Zurück zum Zitat Trau, M., Saville, D.A., Aksay, I.A.: Field-induced layering of colloidal crystals. Science 272, 706–709 (1996)CrossRef Trau, M., Saville, D.A., Aksay, I.A.: Field-induced layering of colloidal crystals. Science 272, 706–709 (1996)CrossRef
27.
Zurück zum Zitat Fustin, C.A., Glasser, G., Spiess, H.W., Jonas, U.: Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces. Adv. Mater. 15, 1025–1028 (2003)CrossRef Fustin, C.A., Glasser, G., Spiess, H.W., Jonas, U.: Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces. Adv. Mater. 15, 1025–1028 (2003)CrossRef
28.
Zurück zum Zitat Míguez, H., Chomski, E., García-Santamaría, F., Ibisate, M., John, S., López, C., Meseguer, F., Mondia, J.P., Ozin, G.A., Toader, O., van Driel, H.M.: Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition. Adv. Mater. 13, 1634–1637 (2001)CrossRef Míguez, H., Chomski, E., García-Santamaría, F., Ibisate, M., John, S., López, C., Meseguer, F., Mondia, J.P., Ozin, G.A., Toader, O., van Driel, H.M.: Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition. Adv. Mater. 13, 1634–1637 (2001)CrossRef
29.
Zurück zum Zitat Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., López, C., Meseguer, F., Míguez, H., Mondia, J.P., Ozin, G.A., Toader, O., van Driel, H.M.: Large-scale synthesis of a silicon photonic crystal with a complete threedimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000)CrossRef Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., López, C., Meseguer, F., Míguez, H., Mondia, J.P., Ozin, G.A., Toader, O., van Driel, H.M.: Large-scale synthesis of a silicon photonic crystal with a complete threedimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000)CrossRef
30.
Zurück zum Zitat Vlasov, Y.A., Bo, X.Z., Sturm, J.C., Norris, D.J.: On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001)CrossRef Vlasov, Y.A., Bo, X.Z., Sturm, J.C., Norris, D.J.: On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001)CrossRef
31.
Zurück zum Zitat Velev, O.D., Tessier, P.M., Lenhoff, A.M., Kaler, E.W.: Materials: a class of porous metallic nanostructures. Nature 401, 548 (1999)CrossRef Velev, O.D., Tessier, P.M., Lenhoff, A.M., Kaler, E.W.: Materials: a class of porous metallic nanostructures. Nature 401, 548 (1999)CrossRef
32.
Zurück zum Zitat Waterhouse, G.I.N., Waterland, M.R.: Opal and inverse opal photonic crystals: fabrication and characterization. Polyhedron 26(2), 356–368 (2007)CrossRef Waterhouse, G.I.N., Waterland, M.R.: Opal and inverse opal photonic crystals: fabrication and characterization. Polyhedron 26(2), 356–368 (2007)CrossRef
33.
Zurück zum Zitat Holland, B.T., Blanford, C.F., Stein, A.: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538–540 (1998)CrossRef Holland, B.T., Blanford, C.F., Stein, A.: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538–540 (1998)CrossRef
34.
Zurück zum Zitat Lei, Z., Li, J., Zhang, Y., Lu, S.: Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol–gel method. J. Mater. Chem. 10, 2629–2631 (2000)CrossRef Lei, Z., Li, J., Zhang, Y., Lu, S.: Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol–gel method. J. Mater. Chem. 10, 2629–2631 (2000)CrossRef
35.
Zurück zum Zitat Braun, P.V., Wiltzius, P.: Microporous materials: electrochemically grown photonic crystals. Nature 402, 603–604 (1999)CrossRef Braun, P.V., Wiltzius, P.: Microporous materials: electrochemically grown photonic crystals. Nature 402, 603–604 (1999)CrossRef
36.
Zurück zum Zitat Xu, L., Wiley, J.B., Zhou, W.L., Frommen, C., Malkinski, L., Wang, J.Q., Baughman, R.H., Zakhidov, A.A.: Electrodeposited nickel and gold nanoscale metal meshes with potentially interesting photonic properties. Chem. Comm. 17, 997–998 (2000) Xu, L., Wiley, J.B., Zhou, W.L., Frommen, C., Malkinski, L., Wang, J.Q., Baughman, R.H., Zakhidov, A.A.: Electrodeposited nickel and gold nanoscale metal meshes with potentially interesting photonic properties. Chem. Comm. 17, 997–998 (2000)
37.
Zurück zum Zitat Pérez, N., Hüls, A., Puente, D., González-Viñas, W., Castaño, E., Olaizola, S.M.: Fabrication and characterization of silver inverse opals. Sens. Actuators B 126, 86–90 (2007)CrossRef Pérez, N., Hüls, A., Puente, D., González-Viñas, W., Castaño, E., Olaizola, S.M.: Fabrication and characterization of silver inverse opals. Sens. Actuators B 126, 86–90 (2007)CrossRef
38.
Zurück zum Zitat Bartlett, P.N., Birkin, P.R., Ghanem, M.A.: Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chem. Commun. 17, 1671–1672 (2000) Bartlett, P.N., Birkin, P.R., Ghanem, M.A.: Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chem. Commun. 17, 1671–1672 (2000)
39.
Zurück zum Zitat Subramania, G., Constant, K., Biswas, R., Sigalas, M.M., Ho, K.M.: Optical photonic crystals synthesized from colloidal systems of polystyrene spheres and nanocrystalline titania. J. Lightwave Technol. 17, 1970–1974 (1999)CrossRef Subramania, G., Constant, K., Biswas, R., Sigalas, M.M., Ho, K.M.: Optical photonic crystals synthesized from colloidal systems of polystyrene spheres and nanocrystalline titania. J. Lightwave Technol. 17, 1970–1974 (1999)CrossRef
40.
Zurück zum Zitat Chung, Y., Leu, I., Lee, J., Hona, M.: Fabrication and characterization of photonic crystals from colloidal processes. J. Cryst. Growth 275, e2389–e2394 (2005)CrossRef Chung, Y., Leu, I., Lee, J., Hona, M.: Fabrication and characterization of photonic crystals from colloidal processes. J. Cryst. Growth 275, e2389–e2394 (2005)CrossRef
41.
Zurück zum Zitat Kulinowski, K.M., Jiang, P., Vaswani, H., Colvin, V.L.: Porous metals from colloidal templates. Adv. Mater. 12, 833–838 (2000)CrossRef Kulinowski, K.M., Jiang, P., Vaswani, H., Colvin, V.L.: Porous metals from colloidal templates. Adv. Mater. 12, 833–838 (2000)CrossRef
42.
Zurück zum Zitat Velev, O., Lenhoff, A.: Colloidal crystals as templates for porous materials. Curr. Opin. Colloid Interface Sci. 5, 56–63 (2000)CrossRef Velev, O., Lenhoff, A.: Colloidal crystals as templates for porous materials. Curr. Opin. Colloid Interface Sci. 5, 56–63 (2000)CrossRef
43.
Zurück zum Zitat Braun, P.V., Wiltzius, P.: Macroporous materials-electrochemically grown photonic crystals. Curr. Opin. Colloid Interface Sci. 7, 116–123 (2002)CrossRef Braun, P.V., Wiltzius, P.: Macroporous materials-electrochemically grown photonic crystals. Curr. Opin. Colloid Interface Sci. 7, 116–123 (2002)CrossRef
44.
Zurück zum Zitat Kuai, S.L., Bader, G., Hache, A., Truong, V.V., Hu, X.F.: High quality ordered macroporous titania films with large filling fraction. Thin Solid Films 483, 136–139 (2005)CrossRef Kuai, S.L., Bader, G., Hache, A., Truong, V.V., Hu, X.F.: High quality ordered macroporous titania films with large filling fraction. Thin Solid Films 483, 136–139 (2005)CrossRef
45.
Zurück zum Zitat Yu, X., Lee, Y.J., Furstenberg, R., White, J.O., Braun, P.V.: Filling fraction dependent properties of inverse opal metallic photonic crystals. Adv. Mater. 19, 1689–1692 (2007)CrossRef Yu, X., Lee, Y.J., Furstenberg, R., White, J.O., Braun, P.V.: Filling fraction dependent properties of inverse opal metallic photonic crystals. Adv. Mater. 19, 1689–1692 (2007)CrossRef
46.
Zurück zum Zitat Subramanian, G., Manoharan, V.N., Thorne, J.D., Pine, D.J.: Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials. Adv. Mater. 11, 1261–1265 (1999)CrossRef Subramanian, G., Manoharan, V.N., Thorne, J.D., Pine, D.J.: Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials. Adv. Mater. 11, 1261–1265 (1999)CrossRef
47.
Zurück zum Zitat Wang, B., Zhao, W., Chen, A., Chua, S.J.: Formation of nanoimprinting mould through use of nanosphere lithography. J. Cryst. Growth 288, 200–204 (2006)CrossRef Wang, B., Zhao, W., Chen, A., Chua, S.J.: Formation of nanoimprinting mould through use of nanosphere lithography. J. Cryst. Growth 288, 200–204 (2006)CrossRef
48.
Zurück zum Zitat Lipson, A.L., Comstock, D.J., Hersam, M.C.: Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization. Small 5(24), 2807–2811 (2009) Lipson, A.L., Comstock, D.J., Hersam, M.C.: Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization. Small 5(24), 2807–2811 (2009)
49.
Zurück zum Zitat Deckman, H.W., Dunsmuir, J.H.: Natural lithography. Appl. Phys. Lett. 41, 377–379 (1982)CrossRef Deckman, H.W., Dunsmuir, J.H.: Natural lithography. Appl. Phys. Lett. 41, 377–379 (1982)CrossRef
50.
Zurück zum Zitat Li, W., Zhao, W., Sun, P.: Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography. Phys. E 41, 1600–1603 (2009)CrossRef Li, W., Zhao, W., Sun, P.: Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography. Phys. E 41, 1600–1603 (2009)CrossRef
51.
Zurück zum Zitat Zhang, Y., Wang, X., Wang, Y., Liu, H., Yang, J.: Ordered nanostructures array fabricated by nanosphere lithography. J. Alloys Compd. 452, 473–477 (2008)CrossRef Zhang, Y., Wang, X., Wang, Y., Liu, H., Yang, J.: Ordered nanostructures array fabricated by nanosphere lithography. J. Alloys Compd. 452, 473–477 (2008)CrossRef
52.
Zurück zum Zitat Haynes, C.L., McFarland, A.D., Smith, M.T., Hulteen, J.C., Van Duyne, R.P.: Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing. J. Phys. Chem. B 106, 1898–1902 (2002)CrossRef Haynes, C.L., McFarland, A.D., Smith, M.T., Hulteen, J.C., Van Duyne, R.P.: Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing. J. Phys. Chem. B 106, 1898–1902 (2002)CrossRef
53.
Zurück zum Zitat Li, W., Xu, L., Zhao, W.M., Sun, P., Huang, X.F., Chen, K.J.: Fabrication of large-scale periodic silicon nanopillar arrays for 2D nanomold using modified nanosphere lithography. Appl. Surface Sci. 253, 9035–9038 (2007)CrossRef Li, W., Xu, L., Zhao, W.M., Sun, P., Huang, X.F., Chen, K.J.: Fabrication of large-scale periodic silicon nanopillar arrays for 2D nanomold using modified nanosphere lithography. Appl. Surface Sci. 253, 9035–9038 (2007)CrossRef
54.
Zurück zum Zitat Jeong, G.H., Park, J.K., Lee, K.K., Jang, J.H., Lee, C.H., Kang, H.B., Yang, C.W., Suh, S.J.: Fabrication of low-cost mold and nanoimprint lithography using polystyrene nanosphere. Microelectron. Eng. 87, 51–55 (2006)CrossRef Jeong, G.H., Park, J.K., Lee, K.K., Jang, J.H., Lee, C.H., Kang, H.B., Yang, C.W., Suh, S.J.: Fabrication of low-cost mold and nanoimprint lithography using polystyrene nanosphere. Microelectron. Eng. 87, 51–55 (2006)CrossRef
55.
Zurück zum Zitat Canpean, V., Astilean, S.: Extending nanosphere lithography for the fabrication of periodic arrays of subwavelength metallic nanoholes. Mater. Lett. 63, 2520–2522 (2009)CrossRef Canpean, V., Astilean, S.: Extending nanosphere lithography for the fabrication of periodic arrays of subwavelength metallic nanoholes. Mater. Lett. 63, 2520–2522 (2009)CrossRef
56.
Zurück zum Zitat Patrini, M., Galli, M., Belotti, M., Andreani, L.C., Guizzetti, G., Pucker, G., Lui, A., Bellutti, P., Pavesi, L.: Optical response of one-dimensional (Si/SiO2)m photonic crystals. J. Appl. Phys. 92, 1816–1820 (2009)CrossRef Patrini, M., Galli, M., Belotti, M., Andreani, L.C., Guizzetti, G., Pucker, G., Lui, A., Bellutti, P., Pavesi, L.: Optical response of one-dimensional (Si/SiO2)m photonic crystals. J. Appl. Phys. 92, 1816–1820 (2009)CrossRef
57.
Zurück zum Zitat Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)CrossRef Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)CrossRef
58.
Zurück zum Zitat Özbay, E., Abeyta, A., Tuttle, G., Tringides, M., Biswas, R., Chan, C.T., Soukoulis, C.M., Ho, K.M.: Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys. Rev. B 50, 1945–1948 (1994)CrossRef Özbay, E., Abeyta, A., Tuttle, G., Tringides, M., Biswas, R., Chan, C.T., Soukoulis, C.M., Ho, K.M.: Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys. Rev. B 50, 1945–1948 (1994)CrossRef
59.
Zurück zum Zitat Qi, M., Lidorikis, E., Rakich, P.T., Johnson, S.G., Joannopoulos, J.D., Ippen, E.P., Smith, H.I.: A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004)CrossRef Qi, M., Lidorikis, E., Rakich, P.T., Johnson, S.G., Joannopoulos, J.D., Ippen, E.P., Smith, H.I.: A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004)CrossRef
60.
Zurück zum Zitat Kuo, C.Y., Lu, S.Y.: Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime. Appl. Phys. Lett. 92, 121919–121921 (2008)CrossRef Kuo, C.Y., Lu, S.Y.: Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime. Appl. Phys. Lett. 92, 121919–121921 (2008)CrossRef
61.
Zurück zum Zitat Eradat, N., Huang, J.D., Vardeny, Z.V., Zakhidov, A.A., Khayrullin, I., Udod, I., Baughman, R.H.: Optical studies of metal-infiltrated opal photonic crystals. Synth. Metals 116, 501–504 (2001)CrossRef Eradat, N., Huang, J.D., Vardeny, Z.V., Zakhidov, A.A., Khayrullin, I., Udod, I., Baughman, R.H.: Optical studies of metal-infiltrated opal photonic crystals. Synth. Metals 116, 501–504 (2001)CrossRef
62.
Zurück zum Zitat Allard, M., Sargent, E.H., Kumacheva, E., Kalinina, O.: Characterization of internal order of colloidal crystals by optical diffraction. Opt. Q. Electron. 34, 27–36 (2002)CrossRef Allard, M., Sargent, E.H., Kumacheva, E., Kalinina, O.: Characterization of internal order of colloidal crystals by optical diffraction. Opt. Q. Electron. 34, 27–36 (2002)CrossRef
63.
Zurück zum Zitat López, C., Vázquez, L., Meseguer, F., Mayoral, R., Ocaña, M., Míguez, H.: Photonic crystal made by close packing SiO2 submicron spheres. Superlattices Microstruct. 22, 399–404 (1997)CrossRef López, C., Vázquez, L., Meseguer, F., Mayoral, R., Ocaña, M., Míguez, H.: Photonic crystal made by close packing SiO2 submicron spheres. Superlattices Microstruct. 22, 399–404 (1997)CrossRef
64.
Zurück zum Zitat Mizeikis, V., Juodkazis, S., Marcinkevicius, A., Matsuo, S., Misawa, H.: Tailoring and characterization of photonic crystals. J. Photochem. Photobiol. C 2, 35–69 (2001)CrossRef Mizeikis, V., Juodkazis, S., Marcinkevicius, A., Matsuo, S., Misawa, H.: Tailoring and characterization of photonic crystals. J. Photochem. Photobiol. C 2, 35–69 (2001)CrossRef
65.
Zurück zum Zitat Vlasov, Y.A., Deutsch, M., Norris, D.J.: Single-domain spectroscopy of self-assembled photonic crystals. Appl. Phys. Lett. 76, 1627–1629 (2000)CrossRef Vlasov, Y.A., Deutsch, M., Norris, D.J.: Single-domain spectroscopy of self-assembled photonic crystals. Appl. Phys. Lett. 76, 1627–1629 (2000)CrossRef
66.
Zurück zum Zitat Luo, D.H., Levy, R.A., Hor, Y.F., Federici, J.F., Pafchek, R.M.: An integrated photonic sensor for in situ monitoring of hazardous organics. Sens. Actuators B Chem. 92, 121–126 (2003)CrossRef Luo, D.H., Levy, R.A., Hor, Y.F., Federici, J.F., Pafchek, R.M.: An integrated photonic sensor for in situ monitoring of hazardous organics. Sens. Actuators B Chem. 92, 121–126 (2003)CrossRef
67.
Zurück zum Zitat Block, I.D., Chan, L.L., Cunningham, B.T.: Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sens. Actuators B Chem. 120, 187–193 (2006)CrossRef Block, I.D., Chan, L.L., Cunningham, B.T.: Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sens. Actuators B Chem. 120, 187–193 (2006)CrossRef
68.
Zurück zum Zitat Alexeev, V.L., Das, S., Finegold, D.N., Asher, S.A.: Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 50, 2353–2360 (2004)CrossRef Alexeev, V.L., Das, S., Finegold, D.N., Asher, S.A.: Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 50, 2353–2360 (2004)CrossRef
69.
Zurück zum Zitat Johnson, S.G., Villeneuve, R.L., Fan, S., Joannopoulos, J.D.: Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62, 8212–8222 (2000)CrossRef Johnson, S.G., Villeneuve, R.L., Fan, S., Joannopoulos, J.D.: Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62, 8212–8222 (2000)CrossRef
70.
Zurück zum Zitat Assefa, S., Petrich, G.S., Kolodziejski, L.A., Mondol, M.K., Smith, H.I.: Fabrication of photonic crystal waveguides composed of a square lattice of dielectric rods. J. Vac. Sci. Technol. B 22, 3363–3365 (2004)CrossRef Assefa, S., Petrich, G.S., Kolodziejski, L.A., Mondol, M.K., Smith, H.I.: Fabrication of photonic crystal waveguides composed of a square lattice of dielectric rods. J. Vac. Sci. Technol. B 22, 3363–3365 (2004)CrossRef
71.
Zurück zum Zitat O’Faolain, L., Yuan, X., McIntyre, D., Thoms, S., Chong, H., De La Rue, R.M., Krauss, T.F.: Low-loss propagation in photonic crystal waveguides. Electron. Lett. 42, 1454–1455 (2006)CrossRef O’Faolain, L., Yuan, X., McIntyre, D., Thoms, S., Chong, H., De La Rue, R.M., Krauss, T.F.: Low-loss propagation in photonic crystal waveguides. Electron. Lett. 42, 1454–1455 (2006)CrossRef
72.
Zurück zum Zitat Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008) Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)
73.
Zurück zum Zitat Miyai, E., Sakai, K., Okano, T., Kunishi, W., Ohnishi, D., Noda, S.: Photonics: lasers producing tailored beams. Nature 441, 946 (2006)CrossRef Miyai, E., Sakai, K., Okano, T., Kunishi, W., Ohnishi, D., Noda, S.: Photonics: lasers producing tailored beams. Nature 441, 946 (2006)CrossRef
74.
Zurück zum Zitat Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)CrossRef Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)CrossRef
75.
Zurück zum Zitat Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRef Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRef
76.
Zurück zum Zitat Faraday, M.: Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)CrossRef Faraday, M.: Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)CrossRef
77.
Zurück zum Zitat Ritchie, R.H., Arakawa, E.T., Cowan, J.J., Hamm, R.N.: Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968)CrossRef Ritchie, R.H., Arakawa, E.T., Cowan, J.J., Hamm, R.N.: Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968)CrossRef
78.
Zurück zum Zitat Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)CrossRef Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)CrossRef
79.
Zurück zum Zitat Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Pellerin, K.M., Thio, T., Pendry, J.B., Ebbesen, T.W.: Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001)CrossRef Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Pellerin, K.M., Thio, T., Pendry, J.B., Ebbesen, T.W.: Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001)CrossRef
80.
Zurück zum Zitat Sauvan, C., Billaudeau, C., Collin, S., Bardou, N., Pardo, F., Pelouard, J.L., Lalanne, P.: Surface plasmon coupling on metallic film perforated by twodimensional rectangular hole array. Appl. Phys. Lett. 92, 011125–011127 (2008)CrossRef Sauvan, C., Billaudeau, C., Collin, S., Bardou, N., Pardo, F., Pelouard, J.L., Lalanne, P.: Surface plasmon coupling on metallic film perforated by twodimensional rectangular hole array. Appl. Phys. Lett. 92, 011125–011127 (2008)CrossRef
81.
Zurück zum Zitat Billaud, P., Huntzinger, J.R., Cottancin, E., Lermé, J., Pellarin, M., Arnaud, L., Broyer, M., Del Fatti, N., Vallée, F.: Optical extinction spectroscopy of single silver nanoparticles. Eur. Phys. J. D 43, 271–274 (2007)CrossRef Billaud, P., Huntzinger, J.R., Cottancin, E., Lermé, J., Pellarin, M., Arnaud, L., Broyer, M., Del Fatti, N., Vallée, F.: Optical extinction spectroscopy of single silver nanoparticles. Eur. Phys. J. D 43, 271–274 (2007)CrossRef
82.
Zurück zum Zitat Chan, G.H., Zhao, J., Schatz, G.C., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C 112, 13958–13963 (2008)CrossRef Chan, G.H., Zhao, J., Schatz, G.C., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C 112, 13958–13963 (2008)CrossRef
83.
Zurück zum Zitat Hicks, E.M., Lyandres, O., Hall, W.P., Zou, S., Glucksberg, M.R., Van Duyne, R.P.: Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography. J. Phys. Chem. C 111, 4116–4124 (2007)CrossRef Hicks, E.M., Lyandres, O., Hall, W.P., Zou, S., Glucksberg, M.R., Van Duyne, R.P.: Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography. J. Phys. Chem. C 111, 4116–4124 (2007)CrossRef
84.
Zurück zum Zitat Haynes, C.L., Van Duyne, R.P.: Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001)CrossRef Haynes, C.L., Van Duyne, R.P.: Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001)CrossRef
85.
Zurück zum Zitat Haes, A.J., Chang, L., Klein, W.L., Van Duyne, R.P.: Detection of a biomarker for Alzheimer’s Disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005)CrossRef Haes, A.J., Chang, L., Klein, W.L., Van Duyne, R.P.: Detection of a biomarker for Alzheimer’s Disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005)CrossRef
86.
Zurück zum Zitat Li, H., Luo, X., Du, C., Chen, X., Fu, Y.: Ag dots array fabricated using laser interference technique for biosensing. Sens. Actuators B, 134, 940–944 (2008) Li, H., Luo, X., Du, C., Chen, X., Fu, Y.: Ag dots array fabricated using laser interference technique for biosensing. Sens. Actuators B, 134, 940–944 (2008)
87.
Zurück zum Zitat Bingham, J.M., Willets, K.A., Shah, N.C., Andrews, D.Q., Van Duyne, R.P.: Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J. Phys. Chem. C 113, 16839–16842 (2009)CrossRef Bingham, J.M., Willets, K.A., Shah, N.C., Andrews, D.Q., Van Duyne, R.P.: Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J. Phys. Chem. C 113, 16839–16842 (2009)CrossRef
88.
Zurück zum Zitat McFarland, A.D., Van Duyne, R.P.: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003)CrossRef McFarland, A.D., Van Duyne, R.P.: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003)CrossRef
89.
Zurück zum Zitat Yonzon, C.R., Stuart, D.A., Zhang, X., McFarland, A.D., Haynes, C.L., Van Duyne, R.P.: Towards advanced chemical and biological nanosensors—an overview. Talanta 67, 438–448 (2005)CrossRef Yonzon, C.R., Stuart, D.A., Zhang, X., McFarland, A.D., Haynes, C.L., Van Duyne, R.P.: Towards advanced chemical and biological nanosensors—an overview. Talanta 67, 438–448 (2005)CrossRef
90.
Zurück zum Zitat Homola, J., Yeea, S.S., Gauglitzb, G.: Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54, 3–15 (1999)CrossRef Homola, J., Yeea, S.S., Gauglitzb, G.: Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54, 3–15 (1999)CrossRef
91.
Zurück zum Zitat Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004)CrossRef Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004)CrossRef
92.
Zurück zum Zitat Liedberg, B., Nylander, C., Lundstrom, I.: Biosensing with surface plasmon resonance—how it all started. Biosens. Bioelectron. 10, i–ix (1995)CrossRef Liedberg, B., Nylander, C., Lundstrom, I.: Biosensing with surface plasmon resonance—how it all started. Biosens. Bioelectron. 10, i–ix (1995)CrossRef
93.
Zurück zum Zitat Vikinge, T.P., Askendal, A., Liedberg, B., Lindahl, T., Tengvall, P.: Immobilized chicken antibodies improve the detection of serum antigens with surface plasmon resonance (spr). Biosens. Bioelectron. 13, 1257–1262 (1998)CrossRef Vikinge, T.P., Askendal, A., Liedberg, B., Lindahl, T., Tengvall, P.: Immobilized chicken antibodies improve the detection of serum antigens with surface plasmon resonance (spr). Biosens. Bioelectron. 13, 1257–1262 (1998)CrossRef
94.
Zurück zum Zitat Carlsson, J., Gullstrand, C., Westermark, G.T., Ludvigsson, J., Enander, K., Liedberg, B.: An indirect competitive immunoassay for insulin autoantibodies based on surface plasmon resonance. Biosens. Bioelectron. 24, 876–881 (2008)CrossRef Carlsson, J., Gullstrand, C., Westermark, G.T., Ludvigsson, J., Enander, K., Liedberg, B.: An indirect competitive immunoassay for insulin autoantibodies based on surface plasmon resonance. Biosens. Bioelectron. 24, 876–881 (2008)CrossRef
95.
Zurück zum Zitat Lee, K.L., Wang, W.S., Wei, P.K.: Sensitive label-free biosensors by using gap plasmons in gold nanoslits. Biosens. Bioelectron. 24, 210–215 (2008)CrossRef Lee, K.L., Wang, W.S., Wei, P.K.: Sensitive label-free biosensors by using gap plasmons in gold nanoslits. Biosens. Bioelectron. 24, 210–215 (2008)CrossRef
96.
Zurück zum Zitat Dostalek, J., Homola, J.: Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions. Sens. Actuators B Chem. 129, 303–310 (2008)CrossRef Dostalek, J., Homola, J.: Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions. Sens. Actuators B Chem. 129, 303–310 (2008)CrossRef
97.
Zurück zum Zitat Nylander, C., Liedberg, B., Lind, T.: Gas detection by means of surface plasmon resonance. Sens. Actuators 3, 79–88 (1982–1983) Nylander, C., Liedberg, B., Lind, T.: Gas detection by means of surface plasmon resonance. Sens. Actuators 3, 79–88 (1982–1983)
98.
Zurück zum Zitat Liedberg, B., Nylander, C., Lunstrom, I.: Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)CrossRef Liedberg, B., Nylander, C., Lunstrom, I.: Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)CrossRef
99.
Zurück zum Zitat Chadwick, B., Tann, J., Brungs, M., Gal, M.: A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy. Sens. Actuators B Chem. 17, 215–220 (1994)CrossRef Chadwick, B., Tann, J., Brungs, M., Gal, M.: A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy. Sens. Actuators B Chem. 17, 215–220 (1994)CrossRef
100.
Zurück zum Zitat Arakawa, T., Miwa, S.: Selective gas detection by means of surface plasmon resonance sensors. Thin Solid Films 281–282, 466–468 (1996) Arakawa, T., Miwa, S.: Selective gas detection by means of surface plasmon resonance sensors. Thin Solid Films 281–282, 466–468 (1996)
101.
Zurück zum Zitat Manera, M., Spadavecchia, J., Buso, D., de Julian Fernandez, C., Mattei, G., Martucci, A., Mulvaney, P., Perez-Juste, J., Rella, R., Vasanelli, L., Mazzoldi, P.: Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sens. Actuators B Chem. 132, 107–115 (2008)CrossRef Manera, M., Spadavecchia, J., Buso, D., de Julian Fernandez, C., Mattei, G., Martucci, A., Mulvaney, P., Perez-Juste, J., Rella, R., Vasanelli, L., Mazzoldi, P.: Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sens. Actuators B Chem. 132, 107–115 (2008)CrossRef
102.
Zurück zum Zitat de Julian Fernandez, C., Manera, M., Pellegrini, G., Bersani, M., Mattei, G., Rella, R., Vasanelli, L., Mazzoldi, P.: Surface plasmon resonance optical gas sensing of nanostructured ZnO films. Sens. Actuators B Chem. 130, 531–537 (2008)CrossRef de Julian Fernandez, C., Manera, M., Pellegrini, G., Bersani, M., Mattei, G., Rella, R., Vasanelli, L., Mazzoldi, P.: Surface plasmon resonance optical gas sensing of nanostructured ZnO films. Sens. Actuators B Chem. 130, 531–537 (2008)CrossRef
103.
Zurück zum Zitat Özbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)CrossRef Özbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)CrossRef
104.
Zurück zum Zitat Atwater, H., Maier, S., Polman, A., Dionne, J., Sweatlock, L.: The new “p–n junction”: plasmonics enables photonic access to the nanoworld. MRS Bull. 30, 385–389 (2005)CrossRef Atwater, H., Maier, S., Polman, A., Dionne, J., Sweatlock, L.: The new “p–n junction”: plasmonics enables photonic access to the nanoworld. MRS Bull. 30, 385–389 (2005)CrossRef
105.
Zurück zum Zitat Hobson, P., Wedge, S., Wasey, J., Sage, I., Barnes, W.: Surface plasmon mediated emission from organic light-emitting diodes. Adv. Mater. 14, 1393–1396 (2002)CrossRef Hobson, P., Wedge, S., Wasey, J., Sage, I., Barnes, W.: Surface plasmon mediated emission from organic light-emitting diodes. Adv. Mater. 14, 1393–1396 (2002)CrossRef
106.
Zurück zum Zitat Okamoto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T., Scherer, A.: Surface plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 3, 601–605 (2004)CrossRef Okamoto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T., Scherer, A.: Surface plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 3, 601–605 (2004)CrossRef
107.
Zurück zum Zitat Westphalen, M., Kreibig, U., Rostalski, J., Luth, H., Meissner, D.: Metal cluster enhanced organic solar cells. Sol. Energy Mater. Sol. Cells 61, 97–105 (2000)CrossRef Westphalen, M., Kreibig, U., Rostalski, J., Luth, H., Meissner, D.: Metal cluster enhanced organic solar cells. Sol. Energy Mater. Sol. Cells 61, 97–105 (2000)CrossRef
108.
Zurück zum Zitat Tredicucci, A., Gmachl, C., Capasso, F., Hutchinson, A.L., Sivco, D.L., Cho, A.Y.: Single-mode surface-plasmon laser. Appl. Phys. Lett. 76, 2164–2166 (2000)CrossRef Tredicucci, A., Gmachl, C., Capasso, F., Hutchinson, A.L., Sivco, D.L., Cho, A.Y.: Single-mode surface-plasmon laser. Appl. Phys. Lett. 76, 2164–2166 (2000)CrossRef
109.
Zurück zum Zitat Campion, A., Kambhampati, P.: Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998)CrossRef Campion, A., Kambhampati, P.: Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998)CrossRef
Metadaten
Titel
Patterning and Optical Properties of Materials at the Nanoscale
verfasst von
Noemí Pérez
Ainara Rodríguez
Santiago M. Olaizola
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-17782-8_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.