Skip to main content

2018 | Supplement | Buchkapitel

17. PCA-Based Neural Network Model for Identification of Loss of Coolant Accidents in Nuclear Power Plants

verfasst von : T. V. Santosh, Gopika Vinod, P. K. Vijayan, Jiamei Deng

Erschienen in: Technology for Smart Futures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nuclear power plants (NPPs) are extremely complex systems that are operated and monitored by human operators. Maximum care is exercised to keep the likelihood of potential risks to a very low value. However, in the event of an unlikely abnormal occurrence, the operator has to take necessary actions relatively fast, which involves complex judgments, making trade-offs between partly incompatible demands, and requires expertise to take proper decision. Over the years, several intelligent systems have evolved to assist the operator for decision-making; however they are highly computationally intensive and may not be suitable for real-time online monitoring or may require large amounts of data. In this paper, an efficient artificial neural network (ANN) model has been developed based on principal component analysis (PCA) for identification of large break loss-of-coolant accident (LOCA) in NPPs. A large database of reactor process parameters is generated through various thermal hydraulic codes, and PCA was performed for 32 break scenarios of LOCA in inlet and outlet reactor headers with and without the availability of emergency core cooling system (ECCS). The PCA was used to optimize the inputs of ANNs. The results of comparison between the classical and PCA-based ANN have been presented in this paper. The simplified ANN model based on PCA is relatively in good agreement with the classical ANN model. It can be said that the PCA-based ANN gives a great computational advantage, due to an important factor when the input parameter dimension is substantially optimized and is usually a case in NPPs. However, there is a scope of improvement in the PCA-based ANN in terms of reduction of error, and this could be achieved by incorporating more of variance during dimension reduction by PCA and also applying different architectures of ANN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Computerized Operator Information System (COIS), Kaiga 3 & 4, NPCIL. Computerized Operator Information System (COIS), Kaiga 3 & 4, NPCIL.
2.
Zurück zum Zitat Coble, J. B., Hashemian, H. M., Meyer, R. M., & Shumaker, B. D. (2012). A review of sensor calibration monitoring for calibration interval extension in nuclear power plants. Instrument: US report, August. Coble, J. B., Hashemian, H. M., Meyer, R. M., & Shumaker, B. D. (2012). A review of sensor calibration monitoring for calibration interval extension in nuclear power plants. Instrument: US report, August.
3.
Zurück zum Zitat Kim, K., & Bartlett, E. B. (2006). Nuclear power plant fault diagnosis using neural networks. IEEE Transactions on Nuclear Sciences, 43(4), 2373–2388. Kim, K., & Bartlett, E. B. (2006). Nuclear power plant fault diagnosis using neural networks. IEEE Transactions on Nuclear Sciences, 43(4), 2373–2388.
4.
Zurück zum Zitat Famtoni, F., & Mazzola, A. (1996). A pattern recognition artificial neural networks based model for signal validation in nuclear power plants. Annual Nuclear Energy, 23(13), 1069–1076.CrossRef Famtoni, F., & Mazzola, A. (1996). A pattern recognition artificial neural networks based model for signal validation in nuclear power plants. Annual Nuclear Energy, 23(13), 1069–1076.CrossRef
5.
Zurück zum Zitat Renders, J. M., Goosens, A., de Viron, F., & Vlaminck, M. D. (1995). A prototype neural network to perform early warning in nuclear power plant. Fuzzy Sets and Systems, 74, 139–151.CrossRef Renders, J. M., Goosens, A., de Viron, F., & Vlaminck, M. D. (1995). A prototype neural network to perform early warning in nuclear power plant. Fuzzy Sets and Systems, 74, 139–151.CrossRef
6.
Zurück zum Zitat Santosh, T. V., Vinod, G., Babar, A. K., Kushwaha, H. S., & Raj, V. V. (2002). Symptom based diagnostic system for nuclear power plant operations using artificial neural networks. Reliability Engineering and System Safety, 82, 33–40. Santosh, T. V., Vinod, G., Babar, A. K., Kushwaha, H. S., & Raj, V. V. (2002). Symptom based diagnostic system for nuclear power plant operations using artificial neural networks. Reliability Engineering and System Safety, 82, 33–40.
7.
Zurück zum Zitat Santosh, T. V., & Vinod, G. (2007). Application of artificial neural networks to nuclear power plant transient diagnosis. Reliability Engineering and System Safety, 92, 1468–1472.CrossRef Santosh, T. V., & Vinod, G. (2007). Application of artificial neural networks to nuclear power plant transient diagnosis. Reliability Engineering and System Safety, 92, 1468–1472.CrossRef
8.
Zurück zum Zitat Santosh, T. V., Vinod, G., Saraf, R. K., Ghosh, A. K., & Kushwaha, H. S. (2007). Application of artificial neural networks to nuclear power plant transient diagnosis. Reliability Engineering and System Safety, 92, 1486–1472.CrossRef Santosh, T. V., Vinod, G., Saraf, R. K., Ghosh, A. K., & Kushwaha, H. S. (2007). Application of artificial neural networks to nuclear power plant transient diagnosis. Reliability Engineering and System Safety, 92, 1486–1472.CrossRef
9.
Zurück zum Zitat Santosh, T. V., Shrivastava, A., Rao, V. V. S. S., Ghosh, A. K., & Kushwaha, H. S. (2009). Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks. Reliability Engineering and System Safety, 54, 759–762.CrossRef Santosh, T. V., Shrivastava, A., Rao, V. V. S. S., Ghosh, A. K., & Kushwaha, H. S. (2009). Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks. Reliability Engineering and System Safety, 54, 759–762.CrossRef
10.
Zurück zum Zitat Santhosh, T. V., Gera, B., Kumar, M., Thangamani, I., Prasad, H., Srivastava, A., Dutta, A., Sharma, P. K., Majumdar, P., Verma, V., Mukhopadhyay, D., Ganju, S., Chatterjee, B., Rao, V. V. S. S., Lele, H. G., & Ghosh, A. K. (2013). Development of a diagnostic system for identifying accident conditions in a reactor. Summary Report, BARC/2009/E/013, BARC. Santhosh, T. V., Gera, B., Kumar, M., Thangamani, I., Prasad, H., Srivastava, A., Dutta, A., Sharma, P. K., Majumdar, P., Verma, V., Mukhopadhyay, D., Ganju, S., Chatterjee, B., Rao, V. V. S. S., Lele, H. G., & Ghosh, A. K. (2013). Development of a diagnostic system for identifying accident conditions in a reactor. Summary Report, BARC/2009/E/013, BARC.
11.
Zurück zum Zitat Santhosh, T. V., Gera, B., Kumar, M., Thangamani, I., Prasad, H., Srivastava, A., Dutta, A., Sharma, P. K., Majumdar, P., Verma, V., Mukhopadhyay, D., Ganju, S., Chatterjee, B., Rao, V. V. S. S., Lele, H. G., & Ghosh, A. K. (2014). Diagnostic & prognostic system for identification of accident scenarios and prediction of source term in nuclear power plants under accident conditions. BARC Newsletter No. 338. Santhosh, T. V., Gera, B., Kumar, M., Thangamani, I., Prasad, H., Srivastava, A., Dutta, A., Sharma, P. K., Majumdar, P., Verma, V., Mukhopadhyay, D., Ganju, S., Chatterjee, B., Rao, V. V. S. S., Lele, H. G., & Ghosh, A. K. (2014). Diagnostic & prognostic system for identification of accident scenarios and prediction of source term in nuclear power plants under accident conditions. BARC Newsletter No. 338.
Metadaten
Titel
PCA-Based Neural Network Model for Identification of Loss of Coolant Accidents in Nuclear Power Plants
verfasst von
T. V. Santosh
Gopika Vinod
P. K. Vijayan
Jiamei Deng
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-60137-3_17