Skip to main content
Erschienen in: Neural Processing Letters 1/2022

27.10.2021

PCA Dimensionality Reduction Method for Image Classification

verfasst von: Baiting Zhao, Xiao Dong, Yongcun Guo, Xiaofen Jia, Yourui Huang

Erschienen in: Neural Processing Letters | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The pooling layer has achieved good results in reducing the feature dimension and parameters of convolution neural network (CNN), but it will cause different degrees of information loss. In order to retain as much feature information as possible, we design a pooling method based on Principal Component Analysis (PCA)-PCAPool. Firstly, all feature maps are traversed with the pooling window in which the data is extracted and stretched into row vectors. With the sliding of the pooling window, all row vectors are arranged in the matrix to form the sample matrix. Then all eigenvectors are extracted from the sample matrix by PCA algorithm to form the eigenvector matrix, which right multiplies the sample matrix to get the principal component matrix. Thirdly, each column of the principal component matrix is weighted with information coefficient which is determined by training to get the pooling vector. Finally, PCAPool result is obtained by blocks arrangement of pooling vector. PCAPool is tested with CNN-Quick, NIN, WRN-SAM, GP-CNN on datasets MNIST, CIFAR10/100 and SVHN. We also used AlexNet on Imagenet2012 to test PCAPool. The experiment results show that compared with traditional pooling methods, PCAPool could retain information in the pooling window better and improve the image classification accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Ji X, Henriques JF, Vedaldi A. Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, Seoul, South Korea, 27 Oct 2019–3 Nov 2019; pp. 9865–9874 Ji X, Henriques JF, Vedaldi A. Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, Seoul, South Korea, 27 Oct 2019–3 Nov 2019; pp. 9865–9874
6.
Zurück zum Zitat Wu B, Liu Y, Lang B, et al. (2017) DGCNN: disordered graph convolutional neural network based on the gaussian mixture model. Neurocomputing. Wu B, Liu Y, Lang B, et al. (2017) DGCNN: disordered graph convolutional neural network based on the gaussian mixture model. Neurocomputing.
7.
Zurück zum Zitat Shi H, Zhang Y, Zhang Z, et al (2018) Hypergraph-induced convolutional networks for visual classification . IEEE Trans Neural Netw Learn Syst, 1–10 Shi H, Zhang Y, Zhang Z, et al (2018) Hypergraph-induced convolutional networks for visual classification . IEEE Trans Neural Netw Learn Syst, 1–10
8.
Zurück zum Zitat Fu S, Liu W, Zhou Y, et al (2019) HpLapGCN: hypergraph p-Laplacian graph convolutional networks. Neurocomputing 362 Fu S, Liu W, Zhou Y, et al (2019) HpLapGCN: hypergraph p-Laplacian graph convolutional networks. Neurocomputing 362
15.
Zurück zum Zitat Arora R, Singh P, Goyal H, Singhal S, Vijayvargiya S (2021) Comparative question answering system based on natural language processing and machine learning question answering system based on natural language processing and machine learning. In: 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), pp. 373-378, https://doi.org/10.1109/ICAIS50930.2021.9396015 Arora R, Singh P, Goyal H, Singhal S, Vijayvargiya S (2021) Comparative question answering system based on natural language processing and machine learning question answering system based on natural language processing and machine learning. In: 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), pp. 373-378, https://​doi.​org/​10.​1109/​ICAIS50930.​2021.​9396015
18.
Zurück zum Zitat Wan L, Zeiler M, Zhang S, Le Cun Y, Fergus R (2013) Regularization of neural networks using dropconnect. In: Proceedings of the 30th international conference on machine learning, Atlanta, GA, USA, 16–21 June 2013; pp 2095–2103 Wan L, Zeiler M, Zhang S, Le Cun Y, Fergus R (2013) Regularization of neural networks using dropconnect. In: Proceedings of the 30th international conference on machine learning, Atlanta, GA, USA, 16–21 June 2013; pp 2095–2103
20.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (Dec 2012) Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, Lake Tahoe, Nevada, USA 3–6:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (Dec 2012) Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, Lake Tahoe, Nevada, USA 3–6:1097–1105
21.
25.
Zurück zum Zitat Pham TC, Luong CM, Visani M, Hoang VD (2018) Deep CNN and data augmentation for skin lesion classification. In: Asian conference on intelligent information and database systems, Dong Hoi City, Vietnam, 19–21 May 2018; pp. 573–582 Pham TC, Luong CM, Visani M, Hoang VD (2018) Deep CNN and data augmentation for skin lesion classification. In: Asian conference on intelligent information and database systems, Dong Hoi City, Vietnam, 19–21 May 2018; pp. 573–582
30.
Zurück zum Zitat Liang M, Hu X (Jun 2015) Recurrent CNNs for object recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA 7–12:3367–3375 Liang M, Hu X (Jun 2015) Recurrent CNNs for object recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA 7–12:3367–3375
32.
Zurück zum Zitat Wang Q-F, Yao K, Zhang R, Hussain A, Huang K (2020) Improving deep neural network performance by integrating kernelized Min-Max objective. Neurocomputing 408:82–90CrossRef Wang Q-F, Yao K, Zhang R, Hussain A, Huang K (2020) Improving deep neural network performance by integrating kernelized Min-Max objective. Neurocomputing 408:82–90CrossRef
34.
Zurück zum Zitat Li Z, Fan Y, Liu W (2015) The effect of whitening transformation on pooling operations in convolutional autoencoders. EURASIP Journal on Advances in Signal Processing 2015(1):1–11CrossRef Li Z, Fan Y, Liu W (2015) The effect of whitening transformation on pooling operations in convolutional autoencoders. EURASIP Journal on Advances in Signal Processing 2015(1):1–11CrossRef
35.
Zurück zum Zitat Sf A , Wl A , DT B, et al. HesGCN: Hessian graph convolutional networks for semi-supervised classification – ScienceDirect. Information Sciences, 2020, 514:484–498.(Fu, S. C.; Liu, W. F.; Tao, D. P.; et al.) Sf A , Wl A , DT B, et al. HesGCN: Hessian graph convolutional networks for semi-supervised classification – ScienceDirect. Information Sciences, 2020, 514:484–498.(Fu, S. C.; Liu, W. F.; Tao, D. P.; et al.)
36.
Zurück zum Zitat Liu W, Fu S, Zhou Y et al (2020) Human activity recognition by manifold regularization based dynamic graph convolutional networks J.; Neurocomputing. Liu W, Fu S, Zhou Y et al (2020) Human activity recognition by manifold regularization based dynamic graph convolutional networks J.; Neurocomputing.
37.
Zurück zum Zitat Zeiler MD, Fergus R (2013) Stochastic pooling for regularization of deep convolutional neural networks. in Proc. Int. Conf. Learn. Representation (ICLR). Zeiler MD, Fergus R (2013) Stochastic pooling for regularization of deep convolutional neural networks. in Proc. Int. Conf. Learn. Representation (ICLR).
40.
Zurück zum Zitat Seuret M, Alberti M, Liwicki M, Ingold R (2017) PCA-initialized deep neural networks applied to document image analysis. In: 14th IAPR international conference on document analysis and recognition (ICDAR), Kyoto, Japan, 9–15 November 2017; pp. 877–882 Seuret M, Alberti M, Liwicki M, Ingold R (2017) PCA-initialized deep neural networks applied to document image analysis. In: 14th IAPR international conference on document analysis and recognition (ICDAR), Kyoto, Japan, 9–15 November 2017; pp. 877–882
43.
Zurück zum Zitat Alahmadi A, Hussain M, Aboalsamh HA et al (2020) PCAPooL: unsupervised feature learning for face recognition using PCA, LBP, and pyramid pooling. Pattern Anal Appl 23(2):673–682CrossRef Alahmadi A, Hussain M, Aboalsamh HA et al (2020) PCAPooL: unsupervised feature learning for face recognition using PCA, LBP, and pyramid pooling. Pattern Anal Appl 23(2):673–682CrossRef
44.
Zurück zum Zitat Giles MB (2008) Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation. In Advances in Automatic Differentiation, 2nd ed.; Bischof, C.H., Bücker, H.M., Hovland, P., Naumann, U., Utke, J. Eds.; Springer: Berlin, Germany, 2008; Volume 3, pp. 35–44, ISBN: 978–3–540–68935–5. Giles MB (2008) Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation. In Advances in Automatic Differentiation, 2nd ed.; Bischof, C.H., Bücker, H.M., Hovland, P., Naumann, U., Utke, J. Eds.; Springer: Berlin, Germany, 2008; Volume 3, pp. 35–44, ISBN: 978–3–540–68935–5.
45.
Zurück zum Zitat Ionescu C, Vantzos O, Sminchisescu C (2015) Matrix Backpropagation for Deep Networks with Structured Layers. In IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2965–2973. Ionescu C, Vantzos O, Sminchisescu C (2015) Matrix Backpropagation for Deep Networks with Structured Layers. In IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2965–2973.
46.
Zurück zum Zitat Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, Orlando, Florida, USA, 03 – 07 November 2014; pp. 675–678 Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, Orlando, Florida, USA, 03 – 07 November 2014; pp. 675–678
47.
Zurück zum Zitat Lin M, Chen Q, Yan S (2013) Network in network. In: Proceedings of International Conference on Learning Representations Lin M, Chen Q, Yan S (2013) Network in network. In: Proceedings of International Conference on Learning Representations
48.
Zurück zum Zitat Foret P, Kleiner A, Mobahi H, Neyshabur B (2020) Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.0141. Foret P, Kleiner A, Mobahi H, Neyshabur B (2020) Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:​2010.​0141.
49.
Zurück zum Zitat Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y (2013) Maxout networks. In: Proceedings of international conference on machine learning, pp. 1319–1327 Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y (2013) Maxout networks. In: Proceedings of international conference on machine learning, pp. 1319–1327
50.
Zurück zum Zitat Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. Artif Intell Stat San Diego California, USA 9–12:562–570 Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. Artif Intell Stat San Diego California, USA 9–12:562–570
51.
Zurück zum Zitat Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2015) Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806. ( J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,“Striving for simplicity,” in Proc. Int. Conf. Learn. Representations) Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2015) Striving for simplicity: the all convolutional net. arXiv preprint arXiv:​1412.​6806. ( J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,“Striving for simplicity,” in Proc. Int. Conf. Learn. Representations)
52.
Zurück zum Zitat Chen T. , Zhang Z. , Ouyang X. , Liu Z. , Shen Z. , Wang Z (2021) "BNN - BN = ?": training binary neural networks without batch normalization. arXiv:2104.08215 Chen T. , Zhang Z. , Ouyang X. , Liu Z. , Shen Z. , Wang Z (2021) "BNN - BN = ?": training binary neural networks without batch normalization. arXiv:​2104.​08215
53.
Zurück zum Zitat Samadzadeh A, Far FS, Javadi A, Nickabadi A, Chehreghani M (2020) Convolutional spiking neural networks for spatio-temporal feature extraction. arXiv:2003.12346 Samadzadeh A, Far FS, Javadi A, Nickabadi A, Chehreghani M (2020) Convolutional spiking neural networks for spatio-temporal feature extraction. arXiv:​2003.​12346
54.
Zurück zum Zitat Kabir HM, Abdar M, Jalali SM, Khosravi A, Atiya A, Nahavandi S, Srinivasan D (2020) SpinalNet: deep neural network with gradual input. arXiv:2007.03347 Kabir HM, Abdar M, Jalali SM, Khosravi A, Atiya A, Nahavandi S, Srinivasan D (2020) SpinalNet: deep neural network with gradual input. arXiv:​2007.​03347
55.
Zurück zum Zitat Maaten LVD, Hinton GE (2008) Visualizing data using t-sne. J Mach Learn Res (JMLR) 9:2579–2605MATH Maaten LVD, Hinton GE (2008) Visualizing data using t-sne. J Mach Learn Res (JMLR) 9:2579–2605MATH
Metadaten
Titel
PCA Dimensionality Reduction Method for Image Classification
verfasst von
Baiting Zhao
Xiao Dong
Yongcun Guo
Xiaofen Jia
Yourui Huang
Publikationsdatum
27.10.2021
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 1/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10632-5

Weitere Artikel der Ausgabe 1/2022

Neural Processing Letters 1/2022 Zur Ausgabe

Neuer Inhalt