Skip to main content

2019 | OriginalPaper | Buchkapitel

3. PCM Current Applications and Thermal Performance

verfasst von : João M. P. Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes

Erschienen in: Thermal Energy Storage with Phase Change Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of phase change materials (PCM) in the buildings is a possibility to achieve the reduction of energy dependency as it allows the use of latent heat storage to increase the thermal inertia without significantly increasing the building weight.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Kosny, T. Stovall, S. Shrestha, D. Yarbrough, Theoretical and experimental thermal performance analysis of complex thermal storage membrane containing bio-based phase-change material (PCM). Proc. Build. XI, 1–13 (2010) J. Kosny, T. Stovall, S. Shrestha, D. Yarbrough, Theoretical and experimental thermal performance analysis of complex thermal storage membrane containing bio-based phase-change material (PCM). Proc. Build. XI, 1–13 (2010)
2.
Zurück zum Zitat B. Zalba, J.M. Marín, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003)CrossRef B. Zalba, J.M. Marín, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003)CrossRef
3.
Zurück zum Zitat H. Mehling, L.F. Cabeza, Heat and Cold Storage with PCM. An Up To Date Introduction into Basics and Application (Springer, Berlin, 2008) H. Mehling, L.F. Cabeza, Heat and Cold Storage with PCM. An Up To Date Introduction into Basics and Application (Springer, Berlin, 2008)
4.
Zurück zum Zitat C.A.P. Santos, L. Matias, Coeficientes de Transmissão Térmica de Elementos da Envolvente dos Edifícios. ICT Informações Cientificas e Técnicas, Edifícios - Ite 50, Edited by Laboratório Nacional de Engenharia Civil. LNEC, Lisboa (2007) C.A.P. Santos, L. Matias, Coeficientes de Transmissão Térmica de Elementos da Envolvente dos Edifícios. ICT Informações Cientificas e Técnicas, Edifícios - Ite 50, Edited by Laboratório Nacional de Engenharia Civil. LNEC, Lisboa (2007)
5.
Zurück zum Zitat Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build. Environ. 42, 2197–2209 (2007)CrossRef Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build. Environ. 42, 2197–2209 (2007)CrossRef
6.
Zurück zum Zitat S. Monteiro da Silva, M. Almeida, Using PCM to Improve Building’s Thermal Performance. 2nd International Conference on Sustainable Energy Storage, 19–21 June, Trinity College Dublin, Ireland S. Monteiro da Silva, M. Almeida, Using PCM to Improve Building’s Thermal Performance. 2nd International Conference on Sustainable Energy Storage, 19–21 June, Trinity College Dublin, Ireland
7.
Zurück zum Zitat S. Scalat, D. Banu, D. Hawes, J. Paris, F. Haghighata, D. Feldman, Full scale thermal testing of latent heat storage in wallboard. Solar Energy Mater Solar Cells 44, 49–61 (1996)CrossRef S. Scalat, D. Banu, D. Hawes, J. Paris, F. Haghighata, D. Feldman, Full scale thermal testing of latent heat storage in wallboard. Solar Energy Mater Solar Cells 44, 49–61 (1996)CrossRef
8.
Zurück zum Zitat R.J. Kedl, T.K. Stovall, Activities in Support of the Wax-Impregnated Wallboard Concept. US Department of Energy: Thermal Energy Storage Researches Activity Review, New Orleans, LA, USA (1989) R.J. Kedl, T.K. Stovall, Activities in Support of the Wax-Impregnated Wallboard Concept. US Department of Energy: Thermal Energy Storage Researches Activity Review, New Orleans, LA, USA (1989)
9.
Zurück zum Zitat D.A. Neeper, Solar Buildings Research: What Are the Best Directions? 213–219 (1986) D.A. Neeper, Solar Buildings Research: What Are the Best Directions? 213–219 (1986)
10.
Zurück zum Zitat V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art. Renew. Sustain. Energy 11, 1146–1166 (2007)CrossRef V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art. Renew. Sustain. Energy 11, 1146–1166 (2007)CrossRef
11.
Zurück zum Zitat B. Farouk, S.I. Guceri. Tromb–Michal Wall Using a Phase Change Material (1979) B. Farouk, S.I. Guceri. Tromb–Michal Wall Using a Phase Change Material (1979)
12.
Zurück zum Zitat K. Peippo, P. Kauranen, P.D. Lund, Multicomponent PCM Wall Optimized for Passive Solar Heating. Energy Build. 17, 259–270 (1991)CrossRef K. Peippo, P. Kauranen, P.D. Lund, Multicomponent PCM Wall Optimized for Passive Solar Heating. Energy Build. 17, 259–270 (1991)CrossRef
13.
Zurück zum Zitat D. Feldman, D. Banu, D. Hawes, E. Ghanbari, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Materials 22, 231–242 (1991)CrossRef D. Feldman, D. Banu, D. Hawes, E. Ghanbari, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Materials 22, 231–242 (1991)CrossRef
14.
Zurück zum Zitat D. Feldman, M.A. Khan, D. Banu, Energy Storage Composite with an Organic Phase Change Material (1989), pp. 333–341 D. Feldman, M.A. Khan, D. Banu, Energy Storage Composite with an Organic Phase Change Material (1989), pp. 333–341
15.
Zurück zum Zitat D. Feldman, M. Shapiro, D. Banu, C.J. Fuks, Fatty Acids and Their Mixtures as Phase Change Materials for Thermal Energy Storage (1989), pp. 201–216 D. Feldman, M. Shapiro, D. Banu, C.J. Fuks, Fatty Acids and Their Mixtures as Phase Change Materials for Thermal Energy Storage (1989), pp. 201–216
16.
Zurück zum Zitat M.M. Shapiro, D. Feldman, D. Hawes, D. Banu, PCM Thermal Storage in Wallboard (1987), pp. 48–58 M.M. Shapiro, D. Feldman, D. Hawes, D. Banu, PCM Thermal Storage in Wallboard (1987), pp. 48–58
17.
Zurück zum Zitat M.M. Shapiro, Development of the Enthalpy Storage Materials, Mixture of Methyl Stearate and Methyl Palmitate (1989) M.M. Shapiro, Development of the Enthalpy Storage Materials, Mixture of Methyl Stearate and Methyl Palmitate (1989)
18.
Zurück zum Zitat D.W. Hawes, D. Feldman, D. Banu, Latent heat storage in building materials. Energy Build. 20, 77–86 (1993)CrossRef D.W. Hawes, D. Feldman, D. Banu, Latent heat storage in building materials. Energy Build. 20, 77–86 (1993)CrossRef
19.
Zurück zum Zitat D.A. Neeper, Potential Benefits of Distributed PCM Thermal Storage. Proceedings of the 14th National Passive Solar Conference, 19–22 June 1989, Denver, pp. 283–288 D.A. Neeper, Potential Benefits of Distributed PCM Thermal Storage. Proceedings of the 14th National Passive Solar Conference, 19–22 June 1989, Denver, pp. 283–288
20.
Zurück zum Zitat D.A. Neeper, Thermal dynamics of wallboard with latent heat storage. Sol. Energy 68, 393–403 (2000)CrossRef D.A. Neeper, Thermal dynamics of wallboard with latent heat storage. Sol. Energy 68, 393–403 (2000)CrossRef
21.
Zurück zum Zitat D. Heim, J.A. Clarke, Numerical modelling and thermal simulation of PCM–gypsum com-posites with ESP-r. Energy Build. 36(8), 795–805 (2004)CrossRef D. Heim, J.A. Clarke, Numerical modelling and thermal simulation of PCM–gypsum com-posites with ESP-r. Energy Build. 36(8), 795–805 (2004)CrossRef
22.
Zurück zum Zitat J. Paris, M. Falardeau, C. Villeneuve, Thermal storage by latent heat: a viable option for energy conservation in buildings. Energy Sources 15, 85–93 (1993)CrossRef J. Paris, M. Falardeau, C. Villeneuve, Thermal storage by latent heat: a viable option for energy conservation in buildings. Energy Sources 15, 85–93 (1993)CrossRef
23.
Zurück zum Zitat A.E. Rudd, Phase change material wallboard for distributed storage in buildings. Trans.-Am. Soc. Heating Refrigerating Air Conditioning Eng. 339–346 (1993) A.E. Rudd, Phase change material wallboard for distributed storage in buildings. Trans.-Am. Soc. Heating Refrigerating Air Conditioning Eng. 339–346 (1993)
24.
Zurück zum Zitat M.W. Babich, R. Benrashid R, R.D. Mounts, DSC studies of new energy storage materials. Part 3. Thermal and flammability studies. Thermochimica Acta, 193–200 (1994) M.W. Babich, R. Benrashid R, R.D. Mounts, DSC studies of new energy storage materials. Part 3. Thermal and flammability studies. Thermochimica Acta, 193–200 (1994)
25.
Zurück zum Zitat D. Banu, D. Feldman, F. Haghighat, J. Paris, D. Hawes, Energy-storing wallboard: flammability tests. J. Mat. Civil Eng. 10, 98–105 (1998)CrossRef D. Banu, D. Feldman, F. Haghighat, J. Paris, D. Hawes, Energy-storing wallboard: flammability tests. J. Mat. Civil Eng. 10, 98–105 (1998)CrossRef
26.
Zurück zum Zitat F. Kuznik, J. Virgone, Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling. Energy Build. 41, 561–570 (2009)CrossRef F. Kuznik, J. Virgone, Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling. Energy Build. 41, 561–570 (2009)CrossRef
27.
Zurück zum Zitat A. Oliver, Thermal characterization of gypsum boards with PCM included: thermal energy storage in buildings through latent heat. Energy Build. 48, 1–7 (2012)CrossRef A. Oliver, Thermal characterization of gypsum boards with PCM included: thermal energy storage in buildings through latent heat. Energy Build. 48, 1–7 (2012)CrossRef
28.
Zurück zum Zitat H. Liu, B.A. Hanzim, Performance of phase change material boards under natural convection. Build. Environ. 44, 1788–1793 (2009)CrossRef H. Liu, B.A. Hanzim, Performance of phase change material boards under natural convection. Build. Environ. 44, 1788–1793 (2009)CrossRef
29.
Zurück zum Zitat L. Shilei, F. Guohui, Z. Neng, D. Li, Experimental study and evaluation of latent heat storage in phase change materials wallboards. Energy Build. 39, 1088–1091 (2007)CrossRef L. Shilei, F. Guohui, Z. Neng, D. Li, Experimental study and evaluation of latent heat storage in phase change materials wallboards. Energy Build. 39, 1088–1091 (2007)CrossRef
30.
Zurück zum Zitat L. Shilei, F. Guohui, Z. Neng, Impact of phase change wall room on indoor thermal environment in winter. Energy Build. 38, 18–24 (2006)CrossRef L. Shilei, F. Guohui, Z. Neng, Impact of phase change wall room on indoor thermal environment in winter. Energy Build. 38, 18–24 (2006)CrossRef
31.
Zurück zum Zitat C. Voelker, O. Kornadt, M. Ostry, Temperature reduction due to the application of phase change materials. Energy Build. 937–944 (2008) C. Voelker, O. Kornadt, M. Ostry, Temperature reduction due to the application of phase change materials. Energy Build. 937–944 (2008)
32.
Zurück zum Zitat F. Kuznik, J. Virgone, K. Johannes, In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renew. Energy 1458–1462 (2011) F. Kuznik, J. Virgone, K. Johannes, In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renew. Energy 1458–1462 (2011)
33.
Zurück zum Zitat F. Kuznik, J. Virgone, Experimental assessment of phase change material for wall building use. Appl. Energy 86, 2038–2046 (2009)CrossRef F. Kuznik, J. Virgone, Experimental assessment of phase change material for wall building use. Appl. Energy 86, 2038–2046 (2009)CrossRef
34.
Zurück zum Zitat A. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build. Environ. 405–410 (1997) A. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build. Environ. 405–410 (1997)
35.
Zurück zum Zitat P. Schossig, H.M. Henning, S. Gschwander, T. Haussmann, Microencapsulated phase-change materials integrated into construction materials. Sol. Energy Mater. Sol. Cells 89(2–3), 297–306 (2005)CrossRef P. Schossig, H.M. Henning, S. Gschwander, T. Haussmann, Microencapsulated phase-change materials integrated into construction materials. Sol. Energy Mater. Sol. Cells 89(2–3), 297–306 (2005)CrossRef
36.
Zurück zum Zitat S.G. Jeong, S.J. Chang, W. Seunghwan, J. Lee, S. Kim, Energy performance evaluation of heat-storage gypsum board with hybrid SSPCM composite. J. Indus. Eng. Chem 237–243 (2017) S.G. Jeong, S.J. Chang, W. Seunghwan, J. Lee, S. Kim, Energy performance evaluation of heat-storage gypsum board with hybrid SSPCM composite. J. Indus. Eng. Chem 237–243 (2017)
37.
Zurück zum Zitat B. Chhugani, F. Klinker, H. Weinlaeder, M. Reim, Energetic performance of two different PCM wallboards and their regeneration behavior in office rooms. Energy Procedia 122, 625–630 (2017)CrossRef B. Chhugani, F. Klinker, H. Weinlaeder, M. Reim, Energetic performance of two different PCM wallboards and their regeneration behavior in office rooms. Energy Procedia 122, 625–630 (2017)CrossRef
38.
Zurück zum Zitat M. Pomianowski, P. Heiselber, Y. Zhang, Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 67, 56–69 (2013)CrossRef M. Pomianowski, P. Heiselber, Y. Zhang, Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 67, 56–69 (2013)CrossRef
39.
Zurück zum Zitat I. Cerón, J. Neila, M. Khayet, Experimental tile with phase change materials (PCM) for building use. Energy Build. 43, 1869–1874 (2011)CrossRef I. Cerón, J. Neila, M. Khayet, Experimental tile with phase change materials (PCM) for building use. Energy Build. 43, 1869–1874 (2011)CrossRef
40.
Zurück zum Zitat D.C. Hittle, Phase Change Materials in Floor Tiles for Thermal Energy Storage (2002) D.C. Hittle, Phase Change Materials in Floor Tiles for Thermal Energy Storage (2002)
41.
Zurück zum Zitat R. Novais, G. Ascensão, M.P. Seabra, J.A. Labrincha, Lightweight dense/porous PCM-ceramic tiles for indoor temperature control. Energy Build. 108, 205–214 (2015) R. Novais, G. Ascensão, M.P. Seabra, J.A. Labrincha, Lightweight dense/porous PCM-ceramic tiles for indoor temperature control. Energy Build. 108, 205–214 (2015)
42.
Zurück zum Zitat T.C. Ling, C.S. Poon, Use of phase change materials for thermal energy storage in concrete: an overview. Construct. Build. Mat. 55–62 (2013) T.C. Ling, C.S. Poon, Use of phase change materials for thermal energy storage in concrete: an overview. Construct. Build. Mat. 55–62 (2013)
43.
Zurück zum Zitat L.F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, O. Zubillaga, Use of mi-croencapsulated PCM in concrete walls for energy savings. Energy Build. 113–119 (2007) L.F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, O. Zubillaga, Use of mi-croencapsulated PCM in concrete walls for energy savings. Energy Build. 113–119 (2007)
44.
Zurück zum Zitat G. Zhou, M. Pang, Experimental investigations on the performance of a collector–storage wall system using phase change materials. Energy Convers. Manag. 178–188 (2015) G. Zhou, M. Pang, Experimental investigations on the performance of a collector–storage wall system using phase change materials. Energy Convers. Manag. 178–188 (2015)
45.
Zurück zum Zitat A.K. Sharma, N.K. Bansal, M.S. Sodha, V. Gupta, Vary-therm wall for cooling/heating of buildings in composite climate. Int. J. Energy Res. 733–739 (1989) A.K. Sharma, N.K. Bansal, M.S. Sodha, V. Gupta, Vary-therm wall for cooling/heating of buildings in composite climate. Int. J. Energy Res. 733–739 (1989)
46.
Zurück zum Zitat L. Zalewski, M. Chantant, S. Lassue, B. Duthoit, Experimental thermal study of a solar wall of composite type. Energy Build. 7–18 (1997) L. Zalewski, M. Chantant, S. Lassue, B. Duthoit, Experimental thermal study of a solar wall of composite type. Energy Build. 7–18 (1997)
47.
Zurück zum Zitat L. Zalewski, S. Lassue, B. Duthoit, M. Butez, Study of solar walls, validating a simulation model. Build. Environ. 109–112 (2002) L. Zalewski, S. Lassue, B. Duthoit, M. Butez, Study of solar walls, validating a simulation model. Build. Environ. 109–112 (2002)
48.
Zurück zum Zitat J. Jie, Y. Hua, H. Wei, P. Gang, L. Jianping, J. Bin, Modeling of a novel Trombe wall with PV cells.2007. Build. Environ. 1544–1552 (2007) J. Jie, Y. Hua, H. Wei, P. Gang, L. Jianping, J. Bin, Modeling of a novel Trombe wall with PV cells.2007. Build. Environ. 1544–1552 (2007)
49.
Zurück zum Zitat L. Zalewski, A. Joulin, S. Lassue, Y. Dutil, D. Rousse, Experimental study of small-scale solar wall integrating phase change material. Solar Energy 208–219 (2012) L. Zalewski, A. Joulin, S. Lassue, Y. Dutil, D. Rousse, Experimental study of small-scale solar wall integrating phase change material. Solar Energy 208–219 (2012)
50.
Zurück zum Zitat E. Leang, P. Tittelein, L. Zalewski, S. Lassue, Numerical study of a composite Trombe solar wall integrating microencapsulated PCM. Energy Procedia 122, 1009–1014 (2017)CrossRef E. Leang, P. Tittelein, L. Zalewski, S. Lassue, Numerical study of a composite Trombe solar wall integrating microencapsulated PCM. Energy Procedia 122, 1009–1014 (2017)CrossRef
51.
Zurück zum Zitat F. Stazi, C. Bonfigli, E. Tomassoni, C. Di Perna, P. Munafò, The effect of high thermal insulation on high thermal mass: is the dynamic behaviour of traditional envelopes in Mediterranean climates still possible? Energy Build. 367–383 (2015) F. Stazi, C. Bonfigli, E. Tomassoni, C. Di Perna, P. Munafò, The effect of high thermal insulation on high thermal mass: is the dynamic behaviour of traditional envelopes in Mediterranean climates still possible? Energy Build. 367–383 (2015)
52.
Zurück zum Zitat J. Onishi, H. Soeda, M. Mizuno, Numerical study on a low energy architecture based upon distributed heat storage system. Renew. Energy 61–66 (2001) J. Onishi, H. Soeda, M. Mizuno, Numerical study on a low energy architecture based upon distributed heat storage system. Renew. Energy 61–66 (2001)
53.
Zurück zum Zitat U. Stritih, P. Novak, Solar heat storage wall for building ventilation. Renew. Energy 268–271 (1996) U. Stritih, P. Novak, Solar heat storage wall for building ventilation. Renew. Energy 268–271 (1996)
54.
Zurück zum Zitat H. Manz, P.W. Egolf, P. Suter, A. Goetzberger, TIM-PCM external wall system for solar space heating and daylighting. Solar Energy 369–379 (1997) H. Manz, P.W. Egolf, P. Suter, A. Goetzberger, TIM-PCM external wall system for solar space heating and daylighting. Solar Energy 369–379 (1997)
55.
Zurück zum Zitat Telkes M. Trombe wall with phase change storage material. 1978 Telkes M. Trombe wall with phase change storage material. 1978
56.
Zurück zum Zitat M. Telkes, Thermal energy storage in salt hydrates. Solar Mat. Sci. 381–393 (1980) M. Telkes, Thermal energy storage in salt hydrates. Solar Mat. Sci. 381–393 (1980)
57.
Zurück zum Zitat Telkes M. Thermal storage for solar heating and cooling. 1975 Telkes M. Thermal storage for solar heating and cooling. 1975
58.
Zurück zum Zitat G.L. Askew, Solar Heating Utilization A Paraffin’s Phase Change Material (1978) G.L. Askew, Solar Heating Utilization A Paraffin’s Phase Change Material (1978)
59.
Zurück zum Zitat C.J. Swet, Phase Change Storage in Passive Solar Architecture (1980), pp 282–286 C.J. Swet, Phase Change Storage in Passive Solar Architecture (1980), pp 282–286
60.
Zurück zum Zitat A.A. Ghoneim, S.A. Kllein, J.A. Duffie, Analysis of collector—storage building walls using phase change materials. Solar Energy 237–242 (1991) A.A. Ghoneim, S.A. Kllein, J.A. Duffie, Analysis of collector—storage building walls using phase change materials. Solar Energy 237–242 (1991)
61.
Zurück zum Zitat S. Chandra, R. Kumar, S. Kaushik, S. Kaul, Thermal performance of a non-A/C building with PCM thermal storage wall. Energy Convers. Manage. 15–20 (1985) S. Chandra, R. Kumar, S. Kaushik, S. Kaul, Thermal performance of a non-A/C building with PCM thermal storage wall. Energy Convers. Manage. 15–20 (1985)
62.
Zurück zum Zitat T. Knowles, Proportioning composites for efficient thermal storage walls. Solar Energy 319–326 (1983) T. Knowles, Proportioning composites for efficient thermal storage walls. Solar Energy 319–326 (1983)
63.
Zurück zum Zitat L. Bourdeau, A. Jaffrin, Actual Performance of a Latent Heat Diode Wall (1979) L. Bourdeau, A. Jaffrin, Actual Performance of a Latent Heat Diode Wall (1979)
64.
Zurück zum Zitat L. Bourdeau, A. Jaffrin, A. Moisan, Captage et Stockage d’ànergie Solaire dans l’Habitat par le Moyen de Mur Diode à Chaleur Latente 559–568 (1980) L. Bourdeau, A. Jaffrin, A. Moisan, Captage et Stockage d’ànergie Solaire dans l’Habitat par le Moyen de Mur Diode à Chaleur Latente 559–568 (1980)
65.
Zurück zum Zitat L. Bourdeau, Utilisation d’un Materiau à Changement de Phase Dans un Mur Trombe sans Thermocirculation (1982), pp 633–642 L. Bourdeau, Utilisation d’un Materiau à Changement de Phase Dans un Mur Trombe sans Thermocirculation (1982), pp 633–642
66.
Zurück zum Zitat D.K. Benson, J.D. Webb, R.W. Burrows, J.D.O. McFadden, C. Christensen (1985) Materials Research for Passive Solar Systems: Solid State Phase-Change Materials (1985) D.K. Benson, J.D. Webb, R.W. Burrows, J.D.O. McFadden, C. Christensen (1985) Materials Research for Passive Solar Systems: Solid State Phase-Change Materials (1985)
67.
Zurück zum Zitat D. Buddhi, S.D. Sharma, Measurements of transmittance of solar radiation through stearic acid: latent heat storage material. Energy Convers. Manag. 1979–1984 (1999) D. Buddhi, S.D. Sharma, Measurements of transmittance of solar radiation through stearic acid: latent heat storage material. Energy Convers. Manag. 1979–1984 (1999)
68.
Zurück zum Zitat U. Stritih, P. Novak, Solar heat storage wall for building ventilation, In: World renewable energy congress (WREC). Renew. Energy. 268–271 (1996) U. Stritih, P. Novak, Solar heat storage wall for building ventilation, In: World renewable energy congress (WREC). Renew. Energy. 268–271 (1996)
69.
Zurück zum Zitat D. Sun, L. Wang, Research on heat transfer performance of passive solar collector-storage wall system with phase change materials. Energy Build. 199, 183–188 (2016)CrossRef D. Sun, L. Wang, Research on heat transfer performance of passive solar collector-storage wall system with phase change materials. Energy Build. 199, 183–188 (2016)CrossRef
70.
Zurück zum Zitat F. Fiorito, Trombe walls for lightweight buildings in temperate and hot climates: exploring the use of phase-change materials for performances improvement. Energy Procedia 1110–1119 (2012) F. Fiorito, Trombe walls for lightweight buildings in temperate and hot climates: exploring the use of phase-change materials for performances improvement. Energy Procedia 1110–1119 (2012)
71.
Zurück zum Zitat Y.A. Kara, A. Kurnuc, Performance of coupled novel triple glass and phase change material wall in the heating season: an experimental study. Solar Energy 2432–2442 (2012) Y.A. Kara, A. Kurnuc, Performance of coupled novel triple glass and phase change material wall in the heating season: an experimental study. Solar Energy 2432–2442 (2012)
72.
Zurück zum Zitat Y.C. Li, S.L. Liu, Experimental study on thermal performance of a solar chimney combined with PCM. Appl. Energy 114, 172–178 (2014)CrossRef Y.C. Li, S.L. Liu, Experimental study on thermal performance of a solar chimney combined with PCM. Appl. Energy 114, 172–178 (2014)CrossRef
73.
Zurück zum Zitat Hu Z, He W, Ji J, Zhang S, Hu Z, He W, A review on the application of Trombe wall system in buildings. Renew. Sustain. Energy Rev. 976–987 (2017) Hu Z, He W, Ji J, Zhang S, Hu Z, He W, A review on the application of Trombe wall system in buildings. Renew. Sustain. Energy Rev. 976–987 (2017)
74.
Zurück zum Zitat Silva Tiago, Vicente Romeu, Rodrigues Fernanda, Literature review on the use of phase change materials in glazing and shading solutions. Renew. Sustain. Energy Rev. 53, 515–535 (2016)CrossRef Silva Tiago, Vicente Romeu, Rodrigues Fernanda, Literature review on the use of phase change materials in glazing and shading solutions. Renew. Sustain. Energy Rev. 53, 515–535 (2016)CrossRef
75.
Zurück zum Zitat F. Cappelletti, A. Prada, P. Romagnoni, A. Gasparella, Passive performance of glazed components in heating and cooling of an open-space office under controlled indoor thermal comfort. Build. Environ. 131–144 (2014) F. Cappelletti, A. Prada, P. Romagnoni, A. Gasparella, Passive performance of glazed components in heating and cooling of an open-space office under controlled indoor thermal comfort. Build. Environ. 131–144 (2014)
76.
Zurück zum Zitat K.A.R. Ismail, C.T. Salinas, J.R. Henriquez, Comparison between PCM filled glass windows and absorbing gas filled windows. Energy Build. 710–719 (2008) K.A.R. Ismail, C.T. Salinas, J.R. Henriquez, Comparison between PCM filled glass windows and absorbing gas filled windows. Energy Build. 710–719 (2008)
78.
Zurück zum Zitat F. Goia, M. Perino, V. Serra, Improving thermal comfort conditions by means of PCM glazing systems. Energy Build. 442–452 (2013) F. Goia, M. Perino, V. Serra, Improving thermal comfort conditions by means of PCM glazing systems. Energy Build. 442–452 (2013)
79.
Zurück zum Zitat L. Jain, S.D. Sharma, Phase change materials for day lighting and glazed insulation in buildings. J. Eng. Sci. Technol. 322–327 (2009) L. Jain, S.D. Sharma, Phase change materials for day lighting and glazed insulation in buildings. J. Eng. Sci. Technol. 322–327 (2009)
80.
Zurück zum Zitat H. Weinläder, A. Beck, J. Fricke, PCM-facade-panel for daylighting and room heating. Solar Energy 177–186 (2005) H. Weinläder, A. Beck, J. Fricke, PCM-facade-panel for daylighting and room heating. Solar Energy 177–186 (2005)
81.
Zurück zum Zitat F. Goia, M. Perino, V. Serra, Experimental analysis of the energy performance of a full-scale PCM glazing prototype. Solar Energy 217–233 (2014) F. Goia, M. Perino, V. Serra, Experimental analysis of the energy performance of a full-scale PCM glazing prototype. Solar Energy 217–233 (2014)
82.
Zurück zum Zitat S. Grynning, F. Goia, E. Rognvik, B. Time, Possibilities for characterization of a PCM window system using large scale measurements. Int. J. Sustain. Built. Environ. 56–64 (2013) S. Grynning, F. Goia, E. Rognvik, B. Time, Possibilities for characterization of a PCM window system using large scale measurements. Int. J. Sustain. Built. Environ. 56–64 (2013)
83.
Zurück zum Zitat S.E. Kalnæs, B.P. Jelle, Phase change materials and products for building applications: a state-of- the-art review and future research opportunities. J. Sustain. Built Environ. 94, 150–176 (2015) S.E. Kalnæs, B.P. Jelle, Phase change materials and products for building applications: a state-of- the-art review and future research opportunities. J. Sustain. Built Environ. 94, 150–176 (2015)
84.
Zurück zum Zitat Alawadhi E.M, Using phase change materials in window shutter to reduce the solar heat gain. Energy Build. 421–429 (2012) Alawadhi E.M, Using phase change materials in window shutter to reduce the solar heat gain. Energy Build. 421–429 (2012)
85.
Zurück zum Zitat D. Buddhi. H.S. Mishra, A. Sharma, Thermal performance studies of a test cell having a PCM window in south direction. IEA, ECESIA Annex 17 (2003) D. Buddhi. H.S. Mishra, A. Sharma, Thermal performance studies of a test cell having a PCM window in south direction. IEA, ECESIA Annex 17 (2003)
86.
Zurück zum Zitat Mehling Harald, Strategic Project ‘‘Innovative PCM-Technology’’—Results and Future Perspectives, 8th Expert Meeting and Work Shop (Kizkalesi, Turkey, 2004) Mehling Harald, Strategic Project ‘‘Innovative PCM-Technology’’—Results and Future Perspectives, 8th Expert Meeting and Work Shop (Kizkalesi, Turkey, 2004)
87.
Zurück zum Zitat N. Soares, J.J. Costa, A. Samagaio, R. Vicente, Numerical evaluation of a phase change material—shutter using solar energy for winter nighttime indoor heating. J. Build. Phys. 367–394 (2014) N. Soares, J.J. Costa, A. Samagaio, R. Vicente, Numerical evaluation of a phase change material—shutter using solar energy for winter nighttime indoor heating. J. Build. Phys. 367–394 (2014)
88.
Zurück zum Zitat L. Shuhong, S. Gaofeng, Z. Kaikai, Z. Xiaosong, Experimental research on the dynamic thermal performance of a novel triple-pane building window filled with PCM. Sustain. Cities. Soc. 15–22 (2016) L. Shuhong, S. Gaofeng, Z. Kaikai, Z. Xiaosong, Experimental research on the dynamic thermal performance of a novel triple-pane building window filled with PCM. Sustain. Cities. Soc. 15–22 (2016)
89.
Zurück zum Zitat C. Liu, Y. Zheng, D. Li, H. Qi, X. Liu, A model to determine thermal performance of a non-ventilated double glazing unit with PCM and experimental validation. Procedia Eng. 293–300 (2016) C. Liu, Y. Zheng, D. Li, H. Qi, X. Liu, A model to determine thermal performance of a non-ventilated double glazing unit with PCM and experimental validation. Procedia Eng. 293–300 (2016)
90.
Zurück zum Zitat G.M. Gomes, A.J. Santos, M.A. Rodrigues. Solar and visible optical properties of glazing systems with venetian blinds: numerical, experimental and blind control study. Build. Environ. 47–59 (2014) G.M. Gomes, A.J. Santos, M.A. Rodrigues. Solar and visible optical properties of glazing systems with venetian blinds: numerical, experimental and blind control study. Build. Environ. 47–59 (2014)
91.
Zurück zum Zitat Silva Tiago, Vicente Romeu, Amaral Cláudia, Figueiredo António, Thermal performance of a window shutter containing PCM: Numerical validation and experimental analysis. Appl. Energy 179, 515–535 (2016) Silva Tiago, Vicente Romeu, Amaral Cláudia, Figueiredo António, Thermal performance of a window shutter containing PCM: Numerical validation and experimental analysis. Appl. Energy 179, 515–535 (2016)
92.
Zurück zum Zitat Silva Tiago, Vicente Romeu, Rodrigues Fernanda, Samagaio António, Development of a window shutter with phase change materials: full scale outdoor experimental approach. Energy Build. 88, 110–121 (2015)CrossRef Silva Tiago, Vicente Romeu, Rodrigues Fernanda, Samagaio António, Development of a window shutter with phase change materials: full scale outdoor experimental approach. Energy Build. 88, 110–121 (2015)CrossRef
93.
Zurück zum Zitat Silva Tiago, Vicente Romeu, Soares Nelson, Ferreira Victor, Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive con-struction solution. Energy Build. 49, 235–245 (2012)CrossRef Silva Tiago, Vicente Romeu, Soares Nelson, Ferreira Victor, Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive con-struction solution. Energy Build. 49, 235–245 (2012)CrossRef
94.
Zurück zum Zitat Silva Tiago, Vicente Romeu, Amaral Cláudia, Samagaio António, Cardoso Claudino, Performance of a window shutter with phase change material under summer Mediterranean climate conditions. Appl. Therm. Eng. 84, 246–256 (2015)CrossRef Silva Tiago, Vicente Romeu, Amaral Cláudia, Samagaio António, Cardoso Claudino, Performance of a window shutter with phase change material under summer Mediterranean climate conditions. Appl. Therm. Eng. 84, 246–256 (2015)CrossRef
95.
Zurück zum Zitat A. Castell, I. Martorell, M. Medrano, G. Pérez, L.F. Cabeza, Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 42, 534–540 (2010)CrossRef A. Castell, I. Martorell, M. Medrano, G. Pérez, L.F. Cabeza, Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 42, 534–540 (2010)CrossRef
96.
Zurück zum Zitat A.V. Sá, M. Azenha, H. Sousa, A. Samagaio, Thermal enhancement of plastering mortars with phase change materials: experimental and numerical approach. Energy Build. 49, 16–27 (2012)CrossRef A.V. Sá, M. Azenha, H. Sousa, A. Samagaio, Thermal enhancement of plastering mortars with phase change materials: experimental and numerical approach. Energy Build. 49, 16–27 (2012)CrossRef
97.
Zurück zum Zitat H.J. Alqallaf, E.M. Alawadhi, Concrete roof with cylindrical holes containing PCM to reduce the heat gain 73–80 (2013) H.J. Alqallaf, E.M. Alawadhi, Concrete roof with cylindrical holes containing PCM to reduce the heat gain 73–80 (2013)
98.
Zurück zum Zitat L. Royon, L. Karim, A. Bontemps, Thermal energy storage and release of a new compo-nent with PCM for integration in floors for thermal management of buildings. Energy Build. 63, 29–35 (2013)CrossRef L. Royon, L. Karim, A. Bontemps, Thermal energy storage and release of a new compo-nent with PCM for integration in floors for thermal management of buildings. Energy Build. 63, 29–35 (2013)CrossRef
99.
Zurück zum Zitat X. Xu, Y. Zhang, K. Ling, H. Di, R. Yang, Modeling and simulation on thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build. 37, 1084–1091 (2005)CrossRef X. Xu, Y. Zhang, K. Ling, H. Di, R. Yang, Modeling and simulation on thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build. 37, 1084–1091 (2005)CrossRef
100.
Zurück zum Zitat A.G. Entrop, H.J.H. Brouwers, A.H.M.E. Reinders, Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses. Sol. Energy 85, 1007–1020 (2011)CrossRef A.G. Entrop, H.J.H. Brouwers, A.H.M.E. Reinders, Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses. Sol. Energy 85, 1007–1020 (2011)CrossRef
101.
Zurück zum Zitat L. Royon, L. Karim, A. Bontemps, Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings. Energy Build. 63, 29–35 (2013)CrossRef L. Royon, L. Karim, A. Bontemps, Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings. Energy Build. 63, 29–35 (2013)CrossRef
102.
Zurück zum Zitat L. Royon, L. Karim, A. Bontemps, Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings. Energy Build. 82, 385–390 (2014)CrossRef L. Royon, L. Karim, A. Bontemps, Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings. Energy Build. 82, 385–390 (2014)CrossRef
103.
Zurück zum Zitat R. Ansuini, R. Larghetti, A. Giretti, M. Lemma, Radiant floors integrated with PCM for indoor temperature control. Energy Build. 43, 3019–3026 (2011)CrossRef R. Ansuini, R. Larghetti, A. Giretti, M. Lemma, Radiant floors integrated with PCM for indoor temperature control. Energy Build. 43, 3019–3026 (2011)CrossRef
104.
Zurück zum Zitat K.L. Huang, G.H. Feng, J.S. Zhang, Experimental and numerical study on phase change material floor in solar water heating system with a new design. Sol. Energy 105, 126–138 (2014)CrossRef K.L. Huang, G.H. Feng, J.S. Zhang, Experimental and numerical study on phase change material floor in solar water heating system with a new design. Sol. Energy 105, 126–138 (2014)CrossRef
105.
Zurück zum Zitat G.B. Zhou, J. He, Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes. Appl. Energ. 138, 648–660 (2015)CrossRef G.B. Zhou, J. He, Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes. Appl. Energ. 138, 648–660 (2015)CrossRef
106.
Zurück zum Zitat M. Zhao, T.T. Zhu, C.N. Wang, H. Chen, Y.W. Zhang, Numerical simulation on the thermal performance of hydraulic floor heating system with phase change materials. Appl. Therm. Eng. 93, 900–907 (2016)CrossRef M. Zhao, T.T. Zhu, C.N. Wang, H. Chen, Y.W. Zhang, Numerical simulation on the thermal performance of hydraulic floor heating system with phase change materials. Appl. Therm. Eng. 93, 900–907 (2016)CrossRef
107.
Zurück zum Zitat Y. Xia, X.S. Zhang, Experimental research on a double-layer radiant floor system with phase change material under heating mode. Appl. Therm. Eng. 96, 600–606 (2016)CrossRef Y. Xia, X.S. Zhang, Experimental research on a double-layer radiant floor system with phase change material under heating mode. Appl. Therm. Eng. 96, 600–606 (2016)CrossRef
108.
Zurück zum Zitat J.F. Belmonte, P. Eguía, A.E. Molina, J.A. Almendros-Ibáñez, Thermal simulation and system optimization of a chilled ceiling coupled with a floor containing a phase change material (PCM). Sustain. Cities Soc. 14, 154–170 (2015)CrossRef J.F. Belmonte, P. Eguía, A.E. Molina, J.A. Almendros-Ibáñez, Thermal simulation and system optimization of a chilled ceiling coupled with a floor containing a phase change material (PCM). Sustain. Cities Soc. 14, 154–170 (2015)CrossRef
109.
Zurück zum Zitat A. Pasupathy, R. Velraj, Effect of double layer phase change material in building roof for year round thermal management. Energy Build. 40, 193–203 (2008)CrossRef A. Pasupathy, R. Velraj, Effect of double layer phase change material in building roof for year round thermal management. Energy Build. 40, 193–203 (2008)CrossRef
110.
Zurück zum Zitat J. Kosny, K. Biswas, W. Miller, S. Kriner, Field thermal performance of naturally ventilated solar roof with PCM heat sink. Sol. Energy 86, 2504–2514 (2012)CrossRef J. Kosny, K. Biswas, W. Miller, S. Kriner, Field thermal performance of naturally ventilated solar roof with PCM heat sink. Sol. Energy 86, 2504–2514 (2012)CrossRef
111.
Zurück zum Zitat M. Koschenz, B. Lehmann, Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy Build. 36, 567–578 (2004)CrossRef M. Koschenz, B. Lehmann, Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy Build. 36, 567–578 (2004)CrossRef
112.
Zurück zum Zitat H. Weinläder, W. Körner, B. Strieder, A ventilated cooling ceiling with integrated latent heat storage—Monitoring results. 65–72 (2014) H. Weinläder, W. Körner, B. Strieder, A ventilated cooling ceiling with integrated latent heat storage—Monitoring results. 65–72 (2014)
113.
Zurück zum Zitat J. Kosny, E. Kossecka, A. Brzezinski, A. Tleoubaev, D. Yarbrough, Dynamic thermal performance analysis of fiber insulations containing bio-based phase change materials (PCMs) 122–131 (2012) J. Kosny, E. Kossecka, A. Brzezinski, A. Tleoubaev, D. Yarbrough, Dynamic thermal performance analysis of fiber insulations containing bio-based phase change materials (PCMs) 122–131 (2012)
114.
Zurück zum Zitat Y. Lei, X. Zhang, G. Xu, Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Energy Build. 68, 639–646 (2014)CrossRef Y. Lei, X. Zhang, G. Xu, Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Energy Build. 68, 639–646 (2014)CrossRef
115.
Zurück zum Zitat Xing Jin, Shuanglong Zhang, Xu Xiaodong, Xiaosong Zhang, Effects of PCM state on its phase change performance and the thermal performance of building walls. Build. Environ. 81, 334–339 (2014)CrossRef Xing Jin, Shuanglong Zhang, Xu Xiaodong, Xiaosong Zhang, Effects of PCM state on its phase change performance and the thermal performance of building walls. Build. Environ. 81, 334–339 (2014)CrossRef
116.
Zurück zum Zitat M.A. Izquierdo-Barrientos, J.F. Belmonte, D. Rodríguez-Sánchez, A.E. Molina, J.A. Al-mendros- Ibáñez, A numerical study of external building walls containing phase change materials (PCM). Appl. Therm. Eng. 47, 73–85 (2012)CrossRef M.A. Izquierdo-Barrientos, J.F. Belmonte, D. Rodríguez-Sánchez, A.E. Molina, J.A. Al-mendros- Ibáñez, A numerical study of external building walls containing phase change materials (PCM). Appl. Therm. Eng. 47, 73–85 (2012)CrossRef
117.
Zurück zum Zitat Kuznik Frédéric, Virgone Joseph, Experimental assessment of a phase change material for wall building use. Appl. Energy 86, 2038–2046 (2009)CrossRef Kuznik Frédéric, Virgone Joseph, Experimental assessment of a phase change material for wall building use. Appl. Energy 86, 2038–2046 (2009)CrossRef
118.
Zurück zum Zitat G. Evola, L. Marletta, The effectiveness of PCM wallboards for the energy re-furbishment of lightweight buildings. Energy Procedia 62, 13–21 (2014) G. Evola, L. Marletta, The effectiveness of PCM wallboards for the energy re-furbishment of lightweight buildings. Energy Procedia 62, 13–21 (2014)
119.
Zurück zum Zitat Jin Xing, Zhang Shuanglong, Effects of PCM state on its phase change performance and the thermal performance of building walls. Build. Environ. 81, 334–339 (2014)CrossRef Jin Xing, Zhang Shuanglong, Effects of PCM state on its phase change performance and the thermal performance of building walls. Build. Environ. 81, 334–339 (2014)CrossRef
120.
Zurück zum Zitat N. Sarier, E. Onder, Organic phase change materials and their textile applications: an overview. Thermochim 7–60 (2012) N. Sarier, E. Onder, Organic phase change materials and their textile applications: an overview. Thermochim 7–60 (2012)
121.
Zurück zum Zitat K. Horikiri, Y. Yao, J. Yao, Numerical optimization of thermal comfort improvement for indoor environment with occupants and furniture 303–315 (2015) K. Horikiri, Y. Yao, J. Yao, Numerical optimization of thermal comfort improvement for indoor environment with occupants and furniture 303–315 (2015)
122.
Zurück zum Zitat X. Yang, P. Fazio, H. Ge, J. Rao, Evaluation of moisture buffering capacity of interior surface materials and furniture in a full-scale experimental investigation, 188–196 (2012) X. Yang, P. Fazio, H. Ge, J. Rao, Evaluation of moisture buffering capacity of interior surface materials and furniture in a full-scale experimental investigation, 188–196 (2012)
123.
Zurück zum Zitat L.H. Mortensen, C. Rode, R. Peuhkuri, Investigation of airflow patterns in a microclimate by particle image velocimetry (PIV), 1929–1938 (2008) L.H. Mortensen, C. Rode, R. Peuhkuri, Investigation of airflow patterns in a microclimate by particle image velocimetry (PIV), 1929–1938 (2008)
124.
Zurück zum Zitat M. Corcione, L. Fontana, G. Moncada Lo Giudice, A parametric analysis on the effects of furnishings upon the performance of radiant floor-panel heating systems 59–68 (2000) M. Corcione, L. Fontana, G. Moncada Lo Giudice, A parametric analysis on the effects of furnishings upon the performance of radiant floor-panel heating systems 59–68 (2000)
125.
Zurück zum Zitat M.Z. Pomianowski, F. Khalegi,G. Domarks, J. Taminskas, K. Bandurski, K.K. Madsen, et al. Experimental investigation of the influence of obstacle in the room on passive night-time cooling using displacement ventilation 499–506 (2011) M.Z. Pomianowski, F. Khalegi,G. Domarks, J. Taminskas, K. Bandurski, K.K. Madsen, et al. Experimental investigation of the influence of obstacle in the room on passive night-time cooling using displacement ventilation 499–506 (2011)
126.
Zurück zum Zitat L. Fontana, Thermal performance of radiant heating floors in furnished enclosed spaces 1547–1555 (2011) L. Fontana, Thermal performance of radiant heating floors in furnished enclosed spaces 1547–1555 (2011)
127.
Zurück zum Zitat J. Le Dréau, Energy flow and thermal comfort in buildings—comparison of radiant and air-based heating and cooling systems (2014) J. Le Dréau, Energy flow and thermal comfort in buildings—comparison of radiant and air-based heating and cooling systems (2014)
128.
Zurück zum Zitat K.A. Antonopoulos, E.P. Koronaki, Effect of indoor mass on the time constant and thermal delay of buildings 391–402 (2000) K.A. Antonopoulos, E.P. Koronaki, Effect of indoor mass on the time constant and thermal delay of buildings 391–402 (2000)
129.
Zurück zum Zitat J. Yam, Y. Li, Z. Zheng, Nonlinear coupling between thermal mass and natural ventilation in buildings, 1251–1264 (2003) J. Yam, Y. Li, Z. Zheng, Nonlinear coupling between thermal mass and natural ventilation in buildings, 1251–1264 (2003)
130.
Zurück zum Zitat H. Wolisz, T.M. Kull, R. Streblow, D. Müller, The Effect of Furniture and Floor Covering upon Dynamic Thermal Building Simulations (2015) H. Wolisz, T.M. Kull, R. Streblow, D. Müller, The Effect of Furniture and Floor Covering upon Dynamic Thermal Building Simulations (2015)
131.
Zurück zum Zitat P. Raftery, E. Lee, T. Webster, T. Hoyt, F. Bauman, Effects of furniture and contents on peak cooling load 445–457 (2014) P. Raftery, E. Lee, T. Webster, T. Hoyt, F. Bauman, Effects of furniture and contents on peak cooling load 445–457 (2014)
132.
Zurück zum Zitat Q. Nguyen, T. Ngo, P. Mendis, A review on fire protection for phase change materials in building applications, in From Materials to Structures: Advancement Through Innovation, ed by Samali, Attard, Song (Taylor & Francis Group, 2013) Q. Nguyen, T. Ngo, P. Mendis, A review on fire protection for phase change materials in building applications, in From Materials to Structures: Advancement Through Innovation, ed by Samali, Attard, Song (Taylor & Francis Group, 2013)
Metadaten
Titel
PCM Current Applications and Thermal Performance
verfasst von
João M. P. Q. Delgado
Joana C. Martinho
Ana Vaz Sá
Ana S. Guimarães
Vitor Abrantes
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-97499-6_3