Skip to main content
Erschienen in: Optimization and Engineering 3/2018

13.06.2018 | Research Article

PDE-constrained optimization in medical image analysis

verfasst von: Andreas Mang, Amir Gholami, Christos Davatzikos, George Biros

Erschienen in: Optimization and Engineering | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

PDE-constrained optimization problems find many applications in medical image analysis, for example, neuroimaging, cardiovascular imaging, and oncologic imaging. We review the related literature and give examples of the formulation, discretization, and numerical solution of PDE-constrained optimization problems for medical imaging. We discuss three examples. The first is image registration, the second is data assimilation for brain tumor patients, and the third is data assimilation in cardiovascular imaging. The image registration problem is a classical task in medical image analysis and seeks to find pointwise correspondences between two or more images. Data assimilation problems use a PDE-constrained formulation to link a biophysical model to patient-specific data obtained from medical images. The associated optimality systems turn out to be sets of nonlinear, multicomponent PDEs that are challenging to solve in an efficient way. The ultimate goal of our work is the design of inversion methods that integrate complementary data, and rigorously follow mathematical and physical principles, in an attempt to support clinical decision making. This requires reliable, high-fidelity algorithms with a short time-to-solution. This task is complicated by model and data uncertainties, and by the fact that PDE-constrained optimization problems are ill-posed in nature, and in general yield high-dimensional, severely ill-conditioned systems after discretization. These features make regularization, effective preconditioners, and iterative solvers that, in many cases, have to be implemented on distributed-memory architectures to be practical, a prerequisite. We showcase state-of-the-art techniques in scientific computing to tackle these challenges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In general, constraints can either be hard or soft. Hard constraints are a set of conditions that the variables are required to satisfy. Soft constraints are penalties for variables that appear in the objective functional; they penalize deviation of the variables from a condition.
 
2
We note that high-resolution imaging technologies have emerged; an example is CLARITY imaging (Chung and Deisseroth 2013; Tomer et al. 2014; Kutten et al. 2017); we revisit this ex-situ imaging technique briefly in Sect. 2. High-resolution imaging techniques are not yet available in a clinical setting. Resolution levels for routinely collected imaging data are between 0.5 and 5 mm in each spatial direction (depending on the imaging modality).
 
3
Similar formulations can be found in other applications, e.g., geophysical sciences Fohring et al. (2014).
 
4
An interesting direction of research is to augment these PDE constraints by more complex biophysics operators (Hogea et al. 2008a; Gooya et al. 2013; Sundar et al. 2009; Zacharaki et al. 2008, 2008, 2009). This results in additional parameters that need to be calibrated.
 
5
Applications for mass-preserving registration can be found in Burger et al. (2013), Mang and Ruthotto (2017) and Wlazło et al. (2016).
 
6
The number of unknowns is the number of discretization points in space times the number of discretization points in time for the velocity times the dimensionality of the ambient space (we invert for a time-dependent vector field).
 
7
A stationary velocity field v is a velocity field that is constant in time, as opposed to a nonstationary—i.e., time-dependent or transient—velocity field. We note that stationary velocity fields do not cover the entire space of diffeomorphisms and do not provide a Riemannian metric on this space, something that may be desirable in certain applications (Beg et al. 2005; Miller 2004; Zhang and Fletcher 2015); this requires time-dependent velocities. The work in Mang and Biros (2015) uses a Galerkin method to control the number of unknowns in time. It is shown experimentally that stationary and nonstationary velocities yield an equivalent registration quality in terms of data mismatch.
 
8
The resolution of these datasets can reach \(5 \upmu m\times 5 \upmu m\times 5 \upmu m\) resulting in \({\mathcal {O}}(4.8\hbox { TB})\) of data (if stored with half precision) Tomer et al. (2014). Overall, this results in 2.4 trillion discretization points in space.
 
9
Other distance measures, such as mutual information, normalized gradient fields, or cross correlation can be used (see Modersitzki 2004, 2009 for an overview). In our formulation, changing the distance measure will affect the first term in the objective functional and the terminal condition of the adjoint equation (8) (see Sect. 5.1.1).
 
10
More sophisticated multi-species models that, e.g., account for hypoxia, necrosis and angiogenesis can be found in Hawkins-Daarud et al. (2013), Gu et al. (2012), Rahman et al. (2017).
 
11
Models that account for the mechanical interaction of the tumor with its surroundings have been described in Chen et al. (2012), Clatz et al. (2005), Hogea et al. (2007), Mohamed and Davatzikos (2005), Weis et al. (2017), Wong et al. (2015) and Wong et al. (2017).
 
12
We note that there exists a large body of literature on optimal control problems with similar PDEs as constraints in other areas. Examples can be found in Barthel et al. (2010), Croft et al. (2015), Figueiredo et al. (2011), Figueiredo and Leal (2013) and Pearson and Stoll (2013).
 
13
A naive implementation may require storage of the time history of the state and adjoint fields; one remedy is the implementation of check-pointing/domain decomposition schemes (Akcelik et al. 2002; Griewank 1992; Heinkenschloss 2005).
 
14
We note that there certainly exist parallel implementations of solvers for similar PDE-constrained optimization problems. We refer to Akcelik et al. (2002, 2006), Biros and Ghattas (1999, 2005a, b), Biegler et al. (2003, 2007) for examples.
 
15
The white matter fibre architecture can be estimated from data measured by so-called diffusion tensor imaging, a magnetic resonance imaging technique that measures the anisotropy of diffusion in the human brain. The result of this measurement is a tensor field \(\tilde{k}\) that can directly be inserted into (4).
 
16
Mutual information is a statistical distance measure that originates from information theory. As opposed to the squared \(L^2\) distance used in the present work (see Sect. 2), which is used for registering images acquired with the same modality, mutual information is used for the registration of images that are acquired with different modalities (e.g., the registration of computed tomography and magnetic resonance images). Mutual information assess the statistical dependence between two random variables (in our case image intensities; see Modersitzki 2004, 2009; Sotiras et al. 2013 for more details).
 
17
We neglect the periodic boundary conditions for simplicity.
 
18
Instead of solving an advection or continuity equation as done in the Eulerian formulation we present here, it has been suggested to solve for the state and adjoint variables using the diffeomorphism y (which involves interpolation operations instead of the solution of a transport equation) Vialard et al. (2012).
 
19
We neglect the Neumann boundary conditions for simplicity.
 
20
The data assimilation problem in Sect. 3 requires Neumann boundary conditions on \(\partial {\varOmega }_B\), with \({\varOmega }_B\subset {\varOmega }\). We use a penalty approach to approximate these boundary conditions. We apply periodic boundary conditions on \(\partial {\varOmega }\) and set the reaction and diffusion coefficients in (4a) to sufficiently small penalty parameters \(k^\epsilon \rightarrow 0\) and \(\rho ^\epsilon \rightarrow 0\) outside of \({\varOmega }_B\); see, e.g., Gholami et al. (2016), Hogea et al. (2008b), Mang (2014) and Mang et al. (2012).
 
21
Note that the \(\inf\)-\(\sup\) condition for pressure spaces arising in finite element discretizations of Stokes problems (Brezzi and Fortin 1991, p. 200ff.) is not an issue with our scheme (incompressibility constraint in diffeomorphic registration problem).
 
22
A possible remedy is to employ check-pointing or domain decomposition strategies (Akcelik et al. 2002; Griewank 1992; Heinkenschloss 2005).
 
23
By reduced space we mean that we iterate only on the reduced space of the control variable of our problem as opposed to so called full-space or all-at-once methods (see, e.g., Benzi et al. 2009; Biros and Ghattas 2005a, b; Haber and Ascher 2001; Herzog and Kunisch 2010 for more details).
 
24
The order \(\tilde{n}\) of the optimality system depends on the problem. For the diffeomorphic registration case the control variable \({\mathbf {w}}\) is given by the velocity field \({\mathbf {v}}\in {\mathbf {R}}^{dn}\), i.e., \(\tilde{n}\equiv dn\); for the tumor case \({\mathbf {w}}\) is given by \(p\in {\mathbf {R}}^{n_p}\), i.e., \(\tilde{n}\equiv n_p\).
 
25
Our implementation also features a trust region method.
 
26
Additional information on the data sets, the imaging protocol, and the preprocessing can be found in Christensen et al. (2006) and at http://​www.​nirep.​org/​.
 
Literatur
Zurück zum Zitat Akcelik V, Biros G, Ghattas O (2002) Parallel multiscale Gauss–Newton–Krylov methods for inverse wave propagation. In: Proceeding of the ACM/IEEE conference on supercomputing, pp 1–15 Akcelik V, Biros G, Ghattas O (2002) Parallel multiscale Gauss–Newton–Krylov methods for inverse wave propagation. In: Proceeding of the ACM/IEEE conference on supercomputing, pp 1–15
Zurück zum Zitat Akcelik V, Biros G, Ghattas O, Hill J, Keyes D, van Bloemen Wanders B (2006) Parallel algorithms for PDE constrained optimization. In: Parallel processing for scientific computing, vol 20, chap. 16. SIAM, Philadelphia, pp 291–322 Akcelik V, Biros G, Ghattas O, Hill J, Keyes D, van Bloemen Wanders B (2006) Parallel algorithms for PDE constrained optimization. In: Parallel processing for scientific computing, vol 20, chap. 16. SIAM, Philadelphia, pp 291–322
Zurück zum Zitat Alexanderian A, Petra N, Stadler G, Ghattas O (2016) A fast and scalable method for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems. SIAM J Sci Comput 38(1):A243–A272MathSciNetMATH Alexanderian A, Petra N, Stadler G, Ghattas O (2016) A fast and scalable method for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems. SIAM J Sci Comput 38(1):A243–A272MathSciNetMATH
Zurück zum Zitat Amit Y (1994) A nonlinear variational problem for image matching. SIAM J Sci Comput 15(1):207–224MathSciNetMATH Amit Y (1994) A nonlinear variational problem for image matching. SIAM J Sci Comput 15(1):207–224MathSciNetMATH
Zurück zum Zitat Andreev R, Scherzer O, Zulehner W (2015) Simultaneous optical flow and source estimation: space-time discretization and preconditioning. Appl Numer Math 96:72–81MathSciNetMATH Andreev R, Scherzer O, Zulehner W (2015) Simultaneous optical flow and source estimation: space-time discretization and preconditioning. Appl Numer Math 96:72–81MathSciNetMATH
Zurück zum Zitat Angenent S, Haker S, Tannenbaum A (2003) Minimizing flows for the Monge-Kantrovich problem. SIAM J Math Anal 35(1):61–97MathSciNetMATH Angenent S, Haker S, Tannenbaum A (2003) Minimizing flows for the Monge-Kantrovich problem. SIAM J Math Anal 35(1):61–97MathSciNetMATH
Zurück zum Zitat Arridge SR, Schotland JC (2009) Optical tomography: forward and inverse problems. Inverse Probl 25(12):123,010MathSciNet Arridge SR, Schotland JC (2009) Optical tomography: forward and inverse problems. Inverse Probl 25(12):123,010MathSciNet
Zurück zum Zitat Arsigny V, Commowick O, Pennec X, Ayache N (2006) A Log-Euclidean framework for statistics on diffeomorphisms. Proceedings of the medical image computing and computer-assisted intervention, vol LNCS 4190:924–931 Arsigny V, Commowick O, Pennec X, Ayache N (2006) A Log-Euclidean framework for statistics on diffeomorphisms. Proceedings of the medical image computing and computer-assisted intervention, vol LNCS 4190:924–931
Zurück zum Zitat Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113 Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113
Zurück zum Zitat Ashburner J, Friston KJ (2011) Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage 55(3):954–967 Ashburner J, Friston KJ (2011) Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage 55(3):954–967
Zurück zum Zitat Atuegwu NC, Colvin DC, Loveless ME, Xu L, Gore JC, Yankeelov TE (2012) Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth. Phys Med Biol 57(1):225 Atuegwu NC, Colvin DC, Loveless ME, Xu L, Gore JC, Yankeelov TE (2012) Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth. Phys Med Biol 57(1):225
Zurück zum Zitat Avants B, Schoenemann PT, Gee JC (2006) Lagrangian frame diffeomorphic image registration: morphometric comparison of human and chimpanzee cortex. Med Image Anal 10:397–412 Avants B, Schoenemann PT, Gee JC (2006) Lagrangian frame diffeomorphic image registration: morphometric comparison of human and chimpanzee cortex. Med Image Anal 10:397–412
Zurück zum Zitat Avants BB, Epstein CL, Brossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41 Avants BB, Epstein CL, Brossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41
Zurück zum Zitat Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54:2033–2044 Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54:2033–2044
Zurück zum Zitat Axel L (2002) Biomechanical dynamics of the heart with MRI. Annu Rev Biomed Eng 4:321–347 Axel L (2002) Biomechanical dynamics of the heart with MRI. Annu Rev Biomed Eng 4:321–347
Zurück zum Zitat Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zhang H (2016) PETSc users manual. Tech. Rep. ANL-95/11-Revision 3.7. Argonne National Laboratory Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zhang H (2016) PETSc users manual. Tech. Rep. ANL-95/11-Revision 3.7. Argonne National Laboratory
Zurück zum Zitat Barbu V, Marinoschi G (2016) An optimal control approach to the optical flow problem. Syst Control Lett 87:1–9MathSciNetMATH Barbu V, Marinoschi G (2016) An optimal control approach to the optical flow problem. Syst Control Lett 87:1–9MathSciNetMATH
Zurück zum Zitat Barthel W, John C, Tröltsch F (2010) Optimal boundary control of a system of reaction diffusion equations. Z Angew Math Mech 90:966–982MathSciNetMATH Barthel W, John C, Tröltsch F (2010) Optimal boundary control of a system of reaction diffusion equations. Z Angew Math Mech 90:966–982MathSciNetMATH
Zurück zum Zitat Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139–157 Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139–157
Zurück zum Zitat Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(4):593–646MathSciNetMATH Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(4):593–646MathSciNetMATH
Zurück zum Zitat Benamou JD, Brenier Y (2000) A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer Math 84:375–393MathSciNetMATH Benamou JD, Brenier Y (2000) A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer Math 84:375–393MathSciNetMATH
Zurück zum Zitat Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14:1–137MathSciNetMATH Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14:1–137MathSciNetMATH
Zurück zum Zitat Benzi M, Haber E, Taralli L (2009) Multilevel algorithms for large-scale interior point methods. SIAM J Sci Comput 31(6):4152–4175MathSciNetMATH Benzi M, Haber E, Taralli L (2009) Multilevel algorithms for large-scale interior point methods. SIAM J Sci Comput 31(6):4152–4175MathSciNetMATH
Zurück zum Zitat Benzi M, Haber E, Taralli L (2011) A preconditioning technique for a class of PDE-constrained optimization problems. Adv Comput Math 35(2–4):149–173MathSciNetMATH Benzi M, Haber E, Taralli L (2011) A preconditioning technique for a class of PDE-constrained optimization problems. Adv Comput Math 35(2–4):149–173MathSciNetMATH
Zurück zum Zitat Biegler LT, Ghattas O, Heinkenschloss M, van Bloemen Waanders B (2003) Large-scale PDE-constrained optimization. Springer, BerlinMATH Biegler LT, Ghattas O, Heinkenschloss M, van Bloemen Waanders B (2003) Large-scale PDE-constrained optimization. Springer, BerlinMATH
Zurück zum Zitat Biegler LT, Ghattas O, Heinkenschloss M, Keyes D, van Bloemen Waanders B (2007) Real-time PDE-constrained optimization. SIAM, PhiladelphiaMATH Biegler LT, Ghattas O, Heinkenschloss M, Keyes D, van Bloemen Waanders B (2007) Real-time PDE-constrained optimization. SIAM, PhiladelphiaMATH
Zurück zum Zitat Biros G, Ghattas O (1999) Parallel Newton–Krylov methods for PDE-constrained optimization. In: Proceedings of the ACM/IEEE conference on supercomputing, pp 28–40 Biros G, Ghattas O (1999) Parallel Newton–Krylov methods for PDE-constrained optimization. In: Proceedings of the ACM/IEEE conference on supercomputing, pp 28–40
Zurück zum Zitat Biros G, Ghattas O (2005a) Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization-part I: the Krylov-Schur solver. SIAM J Sci Comput 27(2):687–713MathSciNetMATH Biros G, Ghattas O (2005a) Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization-part I: the Krylov-Schur solver. SIAM J Sci Comput 27(2):687–713MathSciNetMATH
Zurück zum Zitat Biros G, Ghattas O (2005b) Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization-part II: the Lagrange-Newton solver and its application to optimal control of steady viscous flows. SIAM J Sci Comput 27(2):714–739MathSciNetMATH Biros G, Ghattas O (2005b) Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization-part II: the Lagrange-Newton solver and its application to optimal control of steady viscous flows. SIAM J Sci Comput 27(2):714–739MathSciNetMATH
Zurück zum Zitat Bistoquet A, Parks WJ, Skrinjar O (2006) Myocardial deformation recovery using a 3D biventricular incompressible model. In: Proceedings of the biomedical image registration (Lecture Notes in computer science), vol 4057. Springer, Berlin, pp 110–119 Bistoquet A, Parks WJ, Skrinjar O (2006) Myocardial deformation recovery using a 3D biventricular incompressible model. In: Proceedings of the biomedical image registration (Lecture Notes in computer science), vol 4057. Springer, Berlin, pp 110–119
Zurück zum Zitat Bluemke DA, Krupinski EA, Ovitt T, Gear K, Unger E, Axel L, Boxt LM, Casolo G, Ferrari VA, Funaki B, Globits S, Higgins CB, Julsrud P, Lipton M, Mawson J, Nygren A, Pennell DJ, Stillman A, White RD, Wichter T, Marcus F (2003) MR imaging of arrhythmogenic right ventricular cardiomyopathy: morphologic findings and interobserver reliability. Cardiology 99(3):153–162 Bluemke DA, Krupinski EA, Ovitt T, Gear K, Unger E, Axel L, Boxt LM, Casolo G, Ferrari VA, Funaki B, Globits S, Higgins CB, Julsrud P, Lipton M, Mawson J, Nygren A, Pennell DJ, Stillman A, White RD, Wichter T, Marcus F (2003) MR imaging of arrhythmogenic right ventricular cardiomyopathy: morphologic findings and interobserver reliability. Cardiology 99(3):153–162
Zurück zum Zitat Borzì A, Ito K, Kunisch K (2002) Optimal control formulation for determining optical flow. SIAM J Sci Comput 24(3):818–847MathSciNetMATH Borzì A, Ito K, Kunisch K (2002) Optimal control formulation for determining optical flow. SIAM J Sci Comput 24(3):818–847MathSciNetMATH
Zurück zum Zitat Borzì A, Schulz V (2012) Computational optimization of systems governed by partial differential equations. SIAM, PhiladelphiaMATH Borzì A, Schulz V (2012) Computational optimization of systems governed by partial differential equations. SIAM, PhiladelphiaMATH
Zurück zum Zitat Brezzi F, Fortin M (eds) (1991) Mixed and hybrid finite element methods. Springer, BerlinMATH Brezzi F, Fortin M (eds) (1991) Mixed and hybrid finite element methods. Springer, BerlinMATH
Zurück zum Zitat Burger M, Modersitzki J, Ruthotto L (2013) A hyperelastic regularization energy for image registration. SIAM J Sci Comput 35(1):B132–B148MathSciNetMATH Burger M, Modersitzki J, Ruthotto L (2013) A hyperelastic regularization energy for image registration. SIAM J Sci Comput 35(1):B132–B148MathSciNetMATH
Zurück zum Zitat Castillo E, Lima JAC, Bluemke DA (2003) Regional myocardial function: advances in MR imaging and analysis. Radiographics 23:S127–S140 Castillo E, Lima JAC, Bluemke DA (2003) Regional myocardial function: advances in MR imaging and analysis. Radiographics 23:S127–S140
Zurück zum Zitat Chen K (2011) Optimal control based image sequence interpolation. Ph.D. thesis, University of Bremen Chen K (2011) Optimal control based image sequence interpolation. Ph.D. thesis, University of Bremen
Zurück zum Zitat Chen K, Lorenz DA (2011) Image sequence interpolation using optimal control. J Math Imaging Vis 41:222–238MathSciNetMATH Chen K, Lorenz DA (2011) Image sequence interpolation using optimal control. J Math Imaging Vis 41:222–238MathSciNetMATH
Zurück zum Zitat Chen X, Summers RM, Yoa J (2012) Kidney tumor growth prediction by coupling reaction-diffusion and biomechanical model. IEEE Trans Biomed Eng 60(1):169–173 Chen X, Summers RM, Yoa J (2012) Kidney tumor growth prediction by coupling reaction-diffusion and biomechanical model. IEEE Trans Biomed Eng 60(1):169–173
Zurück zum Zitat Christensen GE, Rabbitt RD, Miller MI (1994) 3D brain mapping using a deformable neuroanatomy. Phys Med Biol 39(3):609–618 Christensen GE, Rabbitt RD, Miller MI (1994) 3D brain mapping using a deformable neuroanatomy. Phys Med Biol 39(3):609–618
Zurück zum Zitat Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5(10):1435–1447 Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5(10):1435–1447
Zurück zum Zitat Christensen GE, Geng X, Kuhl JG, Bruss J, Grabowski TJ, Pirwani IA, Vannier MW, Allen JS, Damasio H (2006) Introduction to the non-rigid image registration evaluation project. Proceedings of the biomedical image registration, vol LNCS 4057:128–135 Christensen GE, Geng X, Kuhl JG, Bruss J, Grabowski TJ, Pirwani IA, Vannier MW, Allen JS, Damasio H (2006) Introduction to the non-rigid image registration evaluation project. Proceedings of the biomedical image registration, vol LNCS 4057:128–135
Zurück zum Zitat Chung K, Deisseroth K (2013) CLARITY for mapping the nverous system. Nat Methods 10:508–513 Chung K, Deisseroth K (2013) CLARITY for mapping the nverous system. Nat Methods 10:508–513
Zurück zum Zitat Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24(10):1334–1346 Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24(10):1334–1346
Zurück zum Zitat Cocosco C, Kollokian V, Kwan RKS, Evans AC (1997) Brainweb: online interface to a 3D MRI simulated brain database. NeuroImage 5:425 Cocosco C, Kollokian V, Kwan RKS, Evans AC (1997) Brainweb: online interface to a 3D MRI simulated brain database. NeuroImage 5:425
Zurück zum Zitat Colin T, Iollo A, Lagaert JB, Saut O (2014) An inverse problem for the recovery of the vascularization of a tumor. J Inverse Ill Posed Probl 22(6):759–786MathSciNetMATH Colin T, Iollo A, Lagaert JB, Saut O (2014) An inverse problem for the recovery of the vascularization of a tumor. J Inverse Ill Posed Probl 22(6):759–786MathSciNetMATH
Zurück zum Zitat Collis J, Connor AJ, Paczkowski M, Kannan P, Pitt-Francis J, Byrne HM, Hubbard ME (2017) Bayesian calibration, validation and uncertainty quantification for predictive modelling of tumour growth: a tutorial. Bull Math Biol 79(4):939–974MathSciNetMATH Collis J, Connor AJ, Paczkowski M, Kannan P, Pitt-Francis J, Byrne HM, Hubbard ME (2017) Bayesian calibration, validation and uncertainty quantification for predictive modelling of tumour growth: a tutorial. Bull Math Biol 79(4):939–974MathSciNetMATH
Zurück zum Zitat Crippa G (2007) The flow associated to weakly differentiable vector fields. Ph.D. thesis, University of Zürich Crippa G (2007) The flow associated to weakly differentiable vector fields. Ph.D. thesis, University of Zürich
Zurück zum Zitat Croft W, Elliott CM, Ladds G, Stinner B, Venkataraman C, Weston C (2015) Parameter identification problems in the modelling of cell motility. J Math Biol 71(2):399–436MathSciNetMATH Croft W, Elliott CM, Ladds G, Stinner B, Venkataraman C, Weston C (2015) Parameter identification problems in the modelling of cell motility. J Math Biol 71(2):399–436MathSciNetMATH
Zurück zum Zitat Czechowski K, Battaglino C, McClanahan C, Iyer K, Yeung PK, Vuduc R (2012) On the communication complexity of 3D FFTs and its implications for exascale. In: Proceedings of the ACM/IEEE Conference on supercomputing, pp 205–214 Czechowski K, Battaglino C, McClanahan C, Iyer K, Yeung PK, Vuduc R (2012) On the communication complexity of 3D FFTs and its implications for exascale. In: Proceedings of the ACM/IEEE Conference on supercomputing, pp 205–214
Zurück zum Zitat Delingette H, Billet F, Wong KCL, Sermesant M, Rhode K, Ginks M, Rinaldi C, Razavi R, Ayache N (2012) Personalization of cardiac motion and contractility from images using variational data assimilation. IEEE Trans Biomed Eng 59(1):20–24 Delingette H, Billet F, Wong KCL, Sermesant M, Rhode K, Ginks M, Rinaldi C, Razavi R, Ayache N (2012) Personalization of cardiac motion and contractility from images using variational data assimilation. IEEE Trans Biomed Eng 59(1):20–24
Zurück zum Zitat Dembo RS, Steihaug T (1983) Truncated-Newton algorithms for large-scale unconstrained optimization. Math Program 26(2):190–212MathSciNetMATH Dembo RS, Steihaug T (1983) Truncated-Newton algorithms for large-scale unconstrained optimization. Math Program 26(2):190–212MathSciNetMATH
Zurück zum Zitat Dontchev AL, Hager WW, Veliov VM (2000) Second-order Runge-kutta approximations in control constrained optimal control. SIAM J Numer Anal 38(1):202–226MathSciNetMATH Dontchev AL, Hager WW, Veliov VM (2000) Second-order Runge-kutta approximations in control constrained optimal control. SIAM J Numer Anal 38(1):202–226MathSciNetMATH
Zurück zum Zitat Dupuis P, Gernander U, Miller MI (1998) Variational problems on flows of diffeomorphisms for image matching. Q Appl Math 56(3):587–600MathSciNetMATH Dupuis P, Gernander U, Miller MI (1998) Variational problems on flows of diffeomorphisms for image matching. Q Appl Math 56(3):587–600MathSciNetMATH
Zurück zum Zitat Eisentat SC, Walker HF (1996) Choosing the forcing terms in an inexact Newton method. SIAM J Sci Comput 17(1):16–32MathSciNetMATH Eisentat SC, Walker HF (1996) Choosing the forcing terms in an inexact Newton method. SIAM J Sci Comput 17(1):16–32MathSciNetMATH
Zurück zum Zitat Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical image processing on the GPU-past, present and future. Med Image Anal 17(8):1073–1094 Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical image processing on the GPU-past, present and future. Med Image Anal 17(8):1073–1094
Zurück zum Zitat Ellingwood ND, Yin Y, Smith M, Lin CL (2016) Efficient methods for implementation of multi-level nonrigid mass-preserving image registration on GPUs and multi-threaded CPUs. Comput Methods Program Biomed 127:290–300 Ellingwood ND, Yin Y, Smith M, Lin CL (2016) Efficient methods for implementation of multi-level nonrigid mass-preserving image registration on GPUs and multi-threaded CPUs. Comput Methods Program Biomed 127:290–300
Zurück zum Zitat Engl H, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer Academic Publishers, DordrechtMATH Engl H, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer Academic Publishers, DordrechtMATH
Zurück zum Zitat Falcone M, Ferretti R (1998) Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J Numer Anal 35(3):909–940MathSciNetMATH Falcone M, Ferretti R (1998) Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J Numer Anal 35(3):909–940MathSciNetMATH
Zurück zum Zitat Figueiredo IN, Leal C (2013) Physiologic parameter estimation using inverse problems. SIAM J Appl Math 73(3):1164–1182MathSciNetMATH Figueiredo IN, Leal C (2013) Physiologic parameter estimation using inverse problems. SIAM J Appl Math 73(3):1164–1182MathSciNetMATH
Zurück zum Zitat Figueiredo IN, Figueiredo PN, Almeida N (2011) Image-driven parameter estimation in absorption-diffusion models of chromoscopy. SIAM J Imaging Sci 4(3):884–904MathSciNetMATH Figueiredo IN, Figueiredo PN, Almeida N (2011) Image-driven parameter estimation in absorption-diffusion models of chromoscopy. SIAM J Imaging Sci 4(3):884–904MathSciNetMATH
Zurück zum Zitat Fischer B, Modersitzki J (2008) Ill-posed medicine–an introduction to image registration. Inverse Probl 24(3):1–16MathSciNetMATH Fischer B, Modersitzki J (2008) Ill-posed medicine–an introduction to image registration. Inverse Probl 24(3):1–16MathSciNetMATH
Zurück zum Zitat Fluck O, Vetter C, Wein W, Kamen A, Preim B, Westermann R (2011) A survey of medical image registration on graphics hardware. Comput Methods Programs Biomed 104(3):e45–e57 Fluck O, Vetter C, Wein W, Kamen A, Preim B, Westermann R (2011) A survey of medical image registration on graphics hardware. Comput Methods Programs Biomed 104(3):e45–e57
Zurück zum Zitat Fohring J, Haber E, Ruthotto L (2014) Geophysical imaging for fluid flow in porous media. SIAM J Sci Comput 36(5):S218–S236MathSciNetMATH Fohring J, Haber E, Ruthotto L (2014) Geophysical imaging for fluid flow in porous media. SIAM J Sci Comput 36(5):S218–S236MathSciNetMATH
Zurück zum Zitat Garcke H, Lam KF, Sitka E, Styles V (2016) A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport. Math Methods Appl Sci 26(6):1095–1148MathSciNetMATH Garcke H, Lam KF, Sitka E, Styles V (2016) A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport. Math Methods Appl Sci 26(6):1095–1148MathSciNetMATH
Zurück zum Zitat Geweke J, Tanizaki H (1999) On Markov chain Monte Carlo methods for nonlinear and non-Gaussian state-space models. Commun Stat Simul Comput 28(4):867–894MATH Geweke J, Tanizaki H (1999) On Markov chain Monte Carlo methods for nonlinear and non-Gaussian state-space models. Commun Stat Simul Comput 28(4):867–894MATH
Zurück zum Zitat Geweke J, Tanizaki H (2003) Note on the sampling distribution for the Metropolis-Hastings algorithm. Commun Stat Theory Methods 32(4):2003 Geweke J, Tanizaki H (2003) Note on the sampling distribution for the Metropolis-Hastings algorithm. Commun Stat Theory Methods 32(4):2003
Zurück zum Zitat Gholami A, Hill J, Malhotra D, Biros G (2016a) AccFFT: a library for distributed-memory FFT on CPU and GPU architectures. In review (arXiv:1506.07933) Gholami A, Hill J, Malhotra D, Biros G (2016a) AccFFT: a library for distributed-memory FFT on CPU and GPU architectures. In review (arXiv:​1506.​07933)
Zurück zum Zitat Goenezen S, Dord JF, Sink Z, Barbone PE, Jiang J, Hall TJ, Oberai AA (2012) Linear and nonlinear elastic modulus imaging: an application to breast cancer diagnosis. IEEE Trans Med Imaging 31(8):1628–1637 Goenezen S, Dord JF, Sink Z, Barbone PE, Jiang J, Hall TJ, Oberai AA (2012) Linear and nonlinear elastic modulus imaging: an application to breast cancer diagnosis. IEEE Trans Med Imaging 31(8):1628–1637
Zurück zum Zitat Gooya A, Pohl KM, Bilello M, Cirillo L, Biros G, Melhem ER, Davatzikos C (2013) GLISTR: glioma image segmentation and registration. IEEE Trans Med Imaging 31(10):1941–1954 Gooya A, Pohl KM, Bilello M, Cirillo L, Biros G, Melhem ER, Davatzikos C (2013) GLISTR: glioma image segmentation and registration. IEEE Trans Med Imaging 31(10):1941–1954
Zurück zum Zitat Grama A, Gupta A, Karypis G, Kumar V (2003) An Introduction to parallel computing: design and analysis of algorithms, 2nd edn. Addison Wesley, BostonMATH Grama A, Gupta A, Karypis G, Kumar V (2003) An Introduction to parallel computing: design and analysis of algorithms, 2nd edn. Addison Wesley, BostonMATH
Zurück zum Zitat Griewank A (1992) Achieving logarithmic growth of temporal and spatial complexity in teverse automatic differentiation. Optim Methods Softw 1:35–54 Griewank A (1992) Achieving logarithmic growth of temporal and spatial complexity in teverse automatic differentiation. Optim Methods Softw 1:35–54
Zurück zum Zitat Gu X, Pand H, Liang Y, Castillo R, Yang D, Choi D, Castillo E, Majumdar A, Guerrero T, Jiang SB (2010) Implementation and evaluation of various demons deformable image registration algorithms on a GPU. Phys Med Biol 55(1):207–219 Gu X, Pand H, Liang Y, Castillo R, Yang D, Choi D, Castillo E, Majumdar A, Guerrero T, Jiang SB (2010) Implementation and evaluation of various demons deformable image registration algorithms on a GPU. Phys Med Biol 55(1):207–219
Zurück zum Zitat Gu S, Chakraborty G, Champley K, Alessio AM, Claridge J, Rockne R, Muzi M, Krohn KA, Spence AM, Alvord EC, Anderson ARA, Kinahan PE, Swanson KR (2012) Applying a patient-specific bio-mathematical model of glioma growth to develop virtual [18F]-FMISO-PET images. Math Med Biol 29(1):31–48MATH Gu S, Chakraborty G, Champley K, Alessio AM, Claridge J, Rockne R, Muzi M, Krohn KA, Spence AM, Alvord EC, Anderson ARA, Kinahan PE, Swanson KR (2012) Applying a patient-specific bio-mathematical model of glioma growth to develop virtual [18F]-FMISO-PET images. Math Med Biol 29(1):31–48MATH
Zurück zum Zitat Gunzburger MD (2003) Perspectives in flow control and optimization. SIAM, PhiladelphiaMATH Gunzburger MD (2003) Perspectives in flow control and optimization. SIAM, PhiladelphiaMATH
Zurück zum Zitat Gurtin ME (1981) An introduction to continuum mechanics, Mathematics in Science and Engineering, vol 158. Academic Press, Cambridge Gurtin ME (1981) An introduction to continuum mechanics, Mathematics in Science and Engineering, vol 158. Academic Press, Cambridge
Zurück zum Zitat Ha L, Krüger J, Joshi S, Silva CT (2011) Multiscale unbiased diffeomorphic atlas construction on multi-GPUs. In: CPU computing gems Emerald edition, chap. 48. Elsevier Inc, New York City, pp 771–791 Ha L, Krüger J, Joshi S, Silva CT (2011) Multiscale unbiased diffeomorphic atlas construction on multi-GPUs. In: CPU computing gems Emerald edition, chap. 48. Elsevier Inc, New York City, pp 771–791
Zurück zum Zitat Ha LK, Krüger J, Fletcher PT, Joshi S, Silva CT (2009) Fast parallel unbiased diffeomorphic atlas construction on multi-graphics processing units. In: Proceedings of the eurographics conference on parallel grphics and visualization, pp 41–48 (2009) Ha LK, Krüger J, Fletcher PT, Joshi S, Silva CT (2009) Fast parallel unbiased diffeomorphic atlas construction on multi-graphics processing units. In: Proceedings of the eurographics conference on parallel grphics and visualization, pp 41–48 (2009)
Zurück zum Zitat Ha L, Krüger J, Joshi S, Silva TC (2010) Multi-scale unbiased diffeomorphic atlas construction on multi-GPUs. GPU Comput Gems Emerald Ed 1:771–791 Ha L, Krüger J, Joshi S, Silva TC (2010) Multi-scale unbiased diffeomorphic atlas construction on multi-GPUs. GPU Comput Gems Emerald Ed 1:771–791
Zurück zum Zitat Haber E, Ascher UM (2001) Preconditioned all-at-once methods for large, sparse parameter estimation problems. Inverse Probl 17(6):1847–1864MathSciNetMATH Haber E, Ascher UM (2001) Preconditioned all-at-once methods for large, sparse parameter estimation problems. Inverse Probl 17(6):1847–1864MathSciNetMATH
Zurück zum Zitat Haber E, Horesh R (2015) A multilevel method for the solution of time dependent optimal transport. Numer Math Theory Methods Appl 8(1):97–111MathSciNetMATH Haber E, Horesh R (2015) A multilevel method for the solution of time dependent optimal transport. Numer Math Theory Methods Appl 8(1):97–111MathSciNetMATH
Zurück zum Zitat Haber E, Modersitzki J (2006) A multilevel method for image registration. SIAM J Sci Comput 27(5):1594–1607MathSciNetMATH Haber E, Modersitzki J (2006) A multilevel method for image registration. SIAM J Sci Comput 27(5):1594–1607MathSciNetMATH
Zurück zum Zitat Haber E, Ascher UM, Oldenburg D (2000) On optimization techniques for solving nonlinear inverse problems. Inverse Probl 16:1263–1280MathSciNetMATH Haber E, Ascher UM, Oldenburg D (2000) On optimization techniques for solving nonlinear inverse problems. Inverse Probl 16:1263–1280MathSciNetMATH
Zurück zum Zitat Hager WW (2000) Runge-Kutta methods in optimal control and the transformed adjoint system. Numer Math 87:247–282MathSciNetMATH Hager WW (2000) Runge-Kutta methods in optimal control and the transformed adjoint system. Numer Math 87:247–282MathSciNetMATH
Zurück zum Zitat Hansen C (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34(4):561–580MathSciNetMATH Hansen C (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34(4):561–580MathSciNetMATH
Zurück zum Zitat Harpold HLP, Alvord EC, Swanson KR (2007) The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol 66(1):1–9 Harpold HLP, Alvord EC, Swanson KR (2007) The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol 66(1):1–9
Zurück zum Zitat Hart GL, Zach C, Niethammer M (2009) An optimal control approach for deformable registration. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9–16 Hart GL, Zach C, Niethammer M (2009) An optimal control approach for deformable registration. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9–16
Zurück zum Zitat Hawkins-Daarud A, Prudhomme S, van der Zee KG, Oden JT (2013a) Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumour growth. J Math Biol 67(6–7):1457–1485MathSciNetMATH Hawkins-Daarud A, Prudhomme S, van der Zee KG, Oden JT (2013a) Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumour growth. J Math Biol 67(6–7):1457–1485MathSciNetMATH
Zurück zum Zitat Hawkins-Daarud A, Rockne RC, Anderson ARA, Swanson KR (2013b) Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor. Front Oncol 3(66):1–12 Hawkins-Daarud A, Rockne RC, Anderson ARA, Swanson KR (2013b) Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor. Front Oncol 3(66):1–12
Zurück zum Zitat Heinkenschloss M (2005) A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems. J Comput Appl Math 1(1):169–198MathSciNetMATH Heinkenschloss M (2005) A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems. J Comput Appl Math 1(1):169–198MathSciNetMATH
Zurück zum Zitat Hernandez M, Bossa MN, Olmos S (2009) Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. Int J Comput Vis 85(3):291–306 Hernandez M, Bossa MN, Olmos S (2009) Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. Int J Comput Vis 85(3):291–306
Zurück zum Zitat Herzog R, Kunisch K (2010) Algorithms for PDE-constrained optimization. GAMM Mitt 33(2):163–176 Herzog R, Kunisch K (2010) Algorithms for PDE-constrained optimization. GAMM Mitt 33(2):163–176
Zurück zum Zitat Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Springer, BerlinMATH Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Springer, BerlinMATH
Zurück zum Zitat Hogea C, Davatzikos C, Biros G (2007) Modeling glioma growth and mass effect in 3D MR images of the brain. In: Proceedings of the medical image computing and computer-assisted intervention, pp 642–650 Hogea C, Davatzikos C, Biros G (2007) Modeling glioma growth and mass effect in 3D MR images of the brain. In: Proceedings of the medical image computing and computer-assisted intervention, pp 642–650
Zurück zum Zitat Hogea C, Davatzikos C, Biros G (2008a) Brain-tumor interaction biophysical models for medical image registration. SIAM J Imaging Sci 30(6):3050–3072MathSciNetMATH Hogea C, Davatzikos C, Biros G (2008a) Brain-tumor interaction biophysical models for medical image registration. SIAM J Imaging Sci 30(6):3050–3072MathSciNetMATH
Zurück zum Zitat Hogea C, Davatzikos C, Biros G (2008b) An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J Math Biol 56(6):793–825MathSciNetMATH Hogea C, Davatzikos C, Biros G (2008b) An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J Math Biol 56(6):793–825MathSciNetMATH
Zurück zum Zitat Hormuth II DA, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V, Yankeelov TE (2015) Predicting in vivo glioma growth wit the reaction diffusion equation constrained by quantitative magnetic resonance imaging data. Phys Biol 12(4):046006 Hormuth II DA, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V, Yankeelov TE (2015) Predicting in vivo glioma growth wit the reaction diffusion equation constrained by quantitative magnetic resonance imaging data. Phys Biol 12(4):046006
Zurück zum Zitat Horn BKP, Shunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203 Horn BKP, Shunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203
Zurück zum Zitat Hu Z, Metaxas D, Axel L (2003) In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Med Image Anal 7(4):435–444 Hu Z, Metaxas D, Axel L (2003) In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Med Image Anal 7(4):435–444
Zurück zum Zitat Jackson PR, Juliano J, Hawkins-Daarud A, Rockne RC, Swanson KR (2015) Patient-specific mathematical neuro-oncology: Using a simple proliferation and invasion tumor model to inform clinical practice. Bull Math Biol 77(5):846–856MathSciNetMATH Jackson PR, Juliano J, Hawkins-Daarud A, Rockne RC, Swanson KR (2015) Patient-specific mathematical neuro-oncology: Using a simple proliferation and invasion tumor model to inform clinical practice. Bull Math Biol 77(5):846–856MathSciNetMATH
Zurück zum Zitat Joshi A, Bangerth W, Sevick-Muraca EM (2004) Adaptive finite element based tomography for fluorescence optical imaging in tissue. Opt Express 12(22):5402–5417 Joshi A, Bangerth W, Sevick-Muraca EM (2004) Adaptive finite element based tomography for fluorescence optical imaging in tissue. Opt Express 12(22):5402–5417
Zurück zum Zitat Joshi S, Davis B, Jornier M, Gerig G (2005) Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(1):S151–S160 Joshi S, Davis B, Jornier M, Gerig G (2005) Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(1):S151–S160
Zurück zum Zitat Kaipio J, Somersalo E (2005) Statistical and computational inverse problems. Springer, BerlinMATH Kaipio J, Somersalo E (2005) Statistical and computational inverse problems. Springer, BerlinMATH
Zurück zum Zitat Kalmoun EM, Garrido L, Caselles V (2011) Line search multilevel optimization as computational methods for dense optical flow. SIAM J Imaging Sci 4(2):695–722MathSciNetMATH Kalmoun EM, Garrido L, Caselles V (2011) Line search multilevel optimization as computational methods for dense optical flow. SIAM J Imaging Sci 4(2):695–722MathSciNetMATH
Zurück zum Zitat Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) ELASTIX: a tollbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205 Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) ELASTIX: a tollbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205
Zurück zum Zitat Knopoff DA, Fernández DR, Torres GA, Turner CV (2013) Adjoint method for a tumor growth PDE-constrained optimization problem. Comput Math Appl 66(6):1104–1119MathSciNet Knopoff DA, Fernández DR, Torres GA, Turner CV (2013) Adjoint method for a tumor growth PDE-constrained optimization problem. Comput Math Appl 66(6):1104–1119MathSciNet
Zurück zum Zitat Knopoff D, Fernández DR, Torres GA, Turner CV (2017) A mathematical method for parameter estimation in a tumor growth model. Comput Appl Math 36(1):733–748MathSciNetMATH Knopoff D, Fernández DR, Torres GA, Turner CV (2017) A mathematical method for parameter estimation in a tumor growth model. Comput Appl Math 36(1):733–748MathSciNetMATH
Zurück zum Zitat Kø N, Tanderup K, Lindegaard JC, Grau C, Søorensen TS (2008) GPU accelerated viscous-fluid deformable registration for radiotherapy. Stud Health Technol Inform 132:327–332 Kø N, Tanderup K, Lindegaard JC, Grau C, Søorensen TS (2008) GPU accelerated viscous-fluid deformable registration for radiotherapy. Stud Health Technol Inform 132:327–332
Zurück zum Zitat Konukoglu E, Clatz O, Bondiau PY, Delingette H, Ayache N (2010) Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med Image Anal 14(2):111–125 Konukoglu E, Clatz O, Bondiau PY, Delingette H, Ayache N (2010) Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med Image Anal 14(2):111–125
Zurück zum Zitat Konukoglu E, Clatz O, Menze BH, Stieltjes B, Weber MA, Mandonnet E, Delingette H, Ayache N (2010) Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29(1):77–95 Konukoglu E, Clatz O, Menze BH, Stieltjes B, Weber MA, Mandonnet E, Delingette H, Ayache N (2010) Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29(1):77–95
Zurück zum Zitat Kutten KS, Charon N, Miller MI, Ratnanather JT, Deisseroth K, Ye L, Vogelstein JT (2017) A diffeomorphic approach to multimodal registration with mutual information: Applications to CLARITY mouse brain images. Proceedings of the medical image computing and computer-assisted intervention, vol LNCS 10433:275–282 Kutten KS, Charon N, Miller MI, Ratnanather JT, Deisseroth K, Ye L, Vogelstein JT (2017) A diffeomorphic approach to multimodal registration with mutual information: Applications to CLARITY mouse brain images. Proceedings of the medical image computing and computer-assisted intervention, vol LNCS 10433:275–282
Zurück zum Zitat Lê M, Delingette H, Kalpathy-Cramer J, Gerstner ER, Batchelor T, Unkelbach J, Ayache N (2015) Bayesian personalization of brain tumor growth model. In: Proceedings of the medical image computing and computer-assisted intervention, pp 424–432 Lê M, Delingette H, Kalpathy-Cramer J, Gerstner ER, Batchelor T, Unkelbach J, Ayache N (2015) Bayesian personalization of brain tumor growth model. In: Proceedings of the medical image computing and computer-assisted intervention, pp 424–432
Zurück zum Zitat Lê M, Delingette H, Kalpathy-Cramer J, Gerstner ER, Batchelor T, Unkelbach J, Ayache N (2017) Personalized radiotherapy planning based on a computational tumor growth model. IEEE Trans Med Imaging 36(3):815–825 Lê M, Delingette H, Kalpathy-Cramer J, Gerstner ER, Batchelor T, Unkelbach J, Ayache N (2017) Personalized radiotherapy planning based on a computational tumor growth model. IEEE Trans Med Imaging 36(3):815–825
Zurück zum Zitat Lee E, Gunzburger M (2010) An optimal control formulation of an image registration problem. J Math Imaging Vis 36(1):69–80MathSciNet Lee E, Gunzburger M (2010) An optimal control formulation of an image registration problem. J Math Imaging Vis 36(1):69–80MathSciNet
Zurück zum Zitat Lee E, Gunzburger M (2011) Anaysis of finite element discretization of an optimal control formulation of the image registration problem. SIAM J Numer Anal 9(4):1321–1349MATH Lee E, Gunzburger M (2011) Anaysis of finite element discretization of an optimal control formulation of the image registration problem. SIAM J Numer Anal 9(4):1321–1349MATH
Zurück zum Zitat Leugering G, Benner P, Engell S, Griewank A, Harbrecht H, Hinze M, Rannacher R, Ulbrich S (eds) (2014) Trends in PDE constrained optimization. Springer, BerlinMATH Leugering G, Benner P, Engell S, Griewank A, Harbrecht H, Hinze M, Rannacher R, Ulbrich S (eds) (2014) Trends in PDE constrained optimization. Springer, BerlinMATH
Zurück zum Zitat Lima E, Oden J, Almeida R (2014) A hybrid ten-species phase-field model of tumor growth. Math Models Methods Appl Sci 24(13):2569–2599MathSciNetMATH Lima E, Oden J, Almeida R (2014) A hybrid ten-species phase-field model of tumor growth. Math Models Methods Appl Sci 24(13):2569–2599MathSciNetMATH
Zurück zum Zitat Lima EABF, Oden JT, Hormuth DA, Yankeelov TE, Almeida RC (2016) Selection, calibration, and validation of models of tumor growth. Math Models Methods Appl Sci 26(12):2341–2368MathSciNetMATH Lima EABF, Oden JT, Hormuth DA, Yankeelov TE, Almeida RC (2016) Selection, calibration, and validation of models of tumor growth. Math Models Methods Appl Sci 26(12):2341–2368MathSciNetMATH
Zurück zum Zitat Lima E, Oden JT, Wohlmuth B, Shahmoradi A, Hormuth DA, Yankeelov TE (2017) Selection and validation of predictive models of radiation effects on tumor growth based on noninvasive imaging data. Comput Methods Appl Mech Eng 327:277–305MathSciNet Lima E, Oden JT, Wohlmuth B, Shahmoradi A, Hormuth DA, Yankeelov TE (2017) Selection and validation of predictive models of radiation effects on tumor growth based on noninvasive imaging data. Comput Methods Appl Mech Eng 327:277–305MathSciNet
Zurück zum Zitat Lions JL (1971) Optimal control of systems governed by partial differential equations. Springer, BerlinMATH Lions JL (1971) Optimal control of systems governed by partial differential equations. Springer, BerlinMATH
Zurück zum Zitat Liu Y, Sadowki SM, Weisbrod AB, Kebebew E, Summers RM, Yao J (2014) Patient specific tumor growth prediction using multimodal images. Med Image Anal 18(3):555–566 Liu Y, Sadowki SM, Weisbrod AB, Kebebew E, Summers RM, Yao J (2014) Patient specific tumor growth prediction using multimodal images. Med Image Anal 18(3):555–566
Zurück zum Zitat Luo Y, Liu P, Shi L, Luo Y, Yi L, Li A, Qin J, Heng PA, Wang D (2015) Accelerating neuroimage registration through parallel computation of similarity metric. PLoS ONE 10(9): e0136,718 (2015) Luo Y, Liu P, Shi L, Luo Y, Yi L, Li A, Qin J, Heng PA, Wang D (2015) Accelerating neuroimage registration through parallel computation of similarity metric. PLoS ONE 10(9): e0136,718 (2015)
Zurück zum Zitat Mang A, Toma A, Schuetz TA, Becker S, Eckey T, Mohr C, Petersen D, Buzug TM (2012b) Biophysical modeling of brain tumor progression: from unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration. Med Phys 39(7):4444–4459. https://doi.org/10.1118/1.4722749 Mang A, Toma A, Schuetz TA, Becker S, Eckey T, Mohr C, Petersen D, Buzug TM (2012b) Biophysical modeling of brain tumor progression: from unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration. Med Phys 39(7):4444–4459. https://​doi.​org/​10.​1118/​1.​4722749
Zurück zum Zitat Mang A, Tharakan S, Gholami A, Nimthani N, Subramanian S, Levitt J, Azmat M, Scheufele K, Mehl M, Davatzikos C, Barth B, Biros G (2017) SIBIA-GlS: scalable biophysics-based image analysis for glioma segmentation. In: Proceedings of the BraTS 2017 workshop, pp 197–204 Mang A, Tharakan S, Gholami A, Nimthani N, Subramanian S, Levitt J, Azmat M, Scheufele K, Mehl M, Davatzikos C, Barth B, Biros G (2017) SIBIA-GlS: scalable biophysics-based image analysis for glioma segmentation. In: Proceedings of the BraTS 2017 workshop, pp 197–204
Zurück zum Zitat Martin J, Wilcox LC, Burstedde C, Ghattas O (2012) A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J Sci Comput 34(3):A1460–A1487MathSciNetMATH Martin J, Wilcox LC, Burstedde C, Ghattas O (2012) A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J Sci Comput 34(3):A1460–A1487MathSciNetMATH
Zurück zum Zitat Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Ç, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin HC, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Leemput KV (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024 Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Ç, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin HC, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Leemput KV (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024
Zurück zum Zitat Menze BH, Van Leemput K, Honkela A, Konukoglu E, Weber MA, Ayache N, Golland P (2011) A generative approach for image-based modeling of tumor growth. In: Information processing in medical imaging (IPMI 2011). Lecture notes in computer science, vol 6801. pp 735–747 Menze BH, Van Leemput K, Honkela A, Konukoglu E, Weber MA, Ayache N, Golland P (2011) A generative approach for image-based modeling of tumor growth. In: Information processing in medical imaging (IPMI 2011). Lecture notes in computer science, vol 6801. pp 735–747
Zurück zum Zitat Mi H, Petitjean C, Dubray B, Vera P, Ruan S (2014) Prediction of lung tumor evolution during radiotherapy in individual patients with PET. IEEE Trans Med Imaging 33(4):995–1003 Mi H, Petitjean C, Dubray B, Vera P, Ruan S (2014) Prediction of lung tumor evolution during radiotherapy in individual patients with PET. IEEE Trans Med Imaging 33(4):995–1003
Zurück zum Zitat Miller MI (2004) Computational anatomy: shape, growth and atrophy comparison via diffeomorphisms. NeuroImage 23(1):S19–S33 Miller MI (2004) Computational anatomy: shape, growth and atrophy comparison via diffeomorphisms. NeuroImage 23(1):S19–S33
Zurück zum Zitat Miller MI, Younes L (2001) Group actions, homeomorphism, and matching: a general framework. Int J Comput Vis 41(1/2):61–81MATH Miller MI, Younes L (2001) Group actions, homeomorphism, and matching: a general framework. Int J Comput Vis 41(1/2):61–81MATH
Zurück zum Zitat Miller MI, Trouvé A, Younes L (2006) Geodesic shooting for computational anatomy. J Math Imaging Vis 24:209–228MathSciNet Miller MI, Trouvé A, Younes L (2006) Geodesic shooting for computational anatomy. J Math Imaging Vis 24:209–228MathSciNet
Zurück zum Zitat Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes DJ, Fox NC, Ourselin S (2010) Fast free-form deformation using graphics processing units. Comput Methods Programs Biomed 98(3):278–284 Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes DJ, Fox NC, Ourselin S (2010) Fast free-form deformation using graphics processing units. Comput Methods Programs Biomed 98(3):278–284
Zurück zum Zitat Modersitzki J (2004) Numerical methods for image registration. Oxford University Press, New YorkMATH Modersitzki J (2004) Numerical methods for image registration. Oxford University Press, New YorkMATH
Zurück zum Zitat Modersitzki J (2009) FAIR: flexible algorithms for image registration. SIAM, PhiladelphiaMATH Modersitzki J (2009) FAIR: flexible algorithms for image registration. SIAM, PhiladelphiaMATH
Zurück zum Zitat Mohamed A, Davatzikos C (2005) Finite element modeling of brain tumor mass-effect from 3D medical images. In: Proceedings of the medical image computing and computer-assisted intervention, pp 400–408 Mohamed A, Davatzikos C (2005) Finite element modeling of brain tumor mass-effect from 3D medical images. In: Proceedings of the medical image computing and computer-assisted intervention, pp 400–408
Zurück zum Zitat Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta J (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 40(2):570–582 Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta J (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 40(2):570–582
Zurück zum Zitat Mosayebi P, Cobzas D, Murtha A, Jagersand M (2012) Tumor invasion margin on the Riemannian space of brain fibers. Med Image Anal 16(2):361–373 Mosayebi P, Cobzas D, Murtha A, Jagersand M (2012) Tumor invasion margin on the Riemannian space of brain fibers. Med Image Anal 16(2):361–373
Zurück zum Zitat Munson T, Sarich J, Wild S, Benson S, McInnes LC (2017) TAO 3.7 users manual. Argonne National Laboratory, Mathematics and Computer Science Division, Illinois Munson T, Sarich J, Wild S, Benson S, McInnes LC (2017) TAO 3.7 users manual. Argonne National Laboratory, Mathematics and Computer Science Division, Illinois
Zurück zum Zitat Murray JD (1989) Mathematical biology. Springer, New YorkMATH Murray JD (1989) Mathematical biology. Springer, New YorkMATH
Zurück zum Zitat Muyan-Ozcelik P, Owens JD, Xia J, Samant SS (2008) Fast deformable registration on the GPU: A CUDA implementation of demons. In: IEEE international conference on computational sciences and its applications, pp 223–233 Muyan-Ozcelik P, Owens JD, Xia J, Samant SS (2008) Fast deformable registration on the GPU: A CUDA implementation of demons. In: IEEE international conference on computational sciences and its applications, pp 223–233
Zurück zum Zitat Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New YorkMATH Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New YorkMATH
Zurück zum Zitat Oberai AA, Gokhale NH, Feijóo RG (2003) Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Probl 19(2):297MathSciNetMATH Oberai AA, Gokhale NH, Feijóo RG (2003) Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Probl 19(2):297MathSciNetMATH
Zurück zum Zitat Oden JT, Prudencio EE, Hawkins-Daarud A (2013) Selection and assessment of phenomenological models of tumor growth. Math Models Methods Appl Sci 23(7):1309–1338MathSciNetMATH Oden JT, Prudencio EE, Hawkins-Daarud A (2013) Selection and assessment of phenomenological models of tumor growth. Math Models Methods Appl Sci 23(7):1309–1338MathSciNetMATH
Zurück zum Zitat Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, Varghese T (1999) Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. J Eng Med 213(3):203–233 Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, Varghese T (1999) Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. J Eng Med 213(3):203–233
Zurück zum Zitat Ou Y, Sotiras A, Paragios N, Davatzikos C (2011) DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. Med Image Anal 15(4):622–639 Ou Y, Sotiras A, Paragios N, Davatzikos C (2011) DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. Med Image Anal 15(4):622–639
Zurück zum Zitat Papademetris X, Sinusas A, Dione D, Duncan J (2001) Estimation of 3D left ventricular deformation from echocardiography. Med Image Anal 5(1):17–28 Papademetris X, Sinusas A, Dione D, Duncan J (2001) Estimation of 3D left ventricular deformation from echocardiography. Med Image Anal 5(1):17–28
Zurück zum Zitat Papademetris X, Sinusas AJ, Dione DP, Constable RT, Duncan JS (2002) Estimation of 3D left ventricular deformation from medical images using biomechanical models. IEEE Trans Med Imaging 21(7):786–800 Papademetris X, Sinusas AJ, Dione DP, Constable RT, Duncan JS (2002) Estimation of 3D left ventricular deformation from medical images using biomechanical models. IEEE Trans Med Imaging 21(7):786–800
Zurück zum Zitat Pearson JW, Stoll M (2013) Fast iterative solution of reaction-diffusion control problems arising from chemical processes. SIAM J Sci Comput 35(5):B987–B1009MathSciNetMATH Pearson JW, Stoll M (2013) Fast iterative solution of reaction-diffusion control problems arising from chemical processes. SIAM J Sci Comput 35(5):B987–B1009MathSciNetMATH
Zurück zum Zitat Perperidis D, Mohiaddin R, Rueckert D (2005a) Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Proceedings of the medical image computing and computer-assisted intervention (Lecture notes in computer science), vol 3750. Springer, Berlin, pp 402–410 Perperidis D, Mohiaddin R, Rueckert D (2005a) Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Proceedings of the medical image computing and computer-assisted intervention (Lecture notes in computer science), vol 3750. Springer, Berlin, pp 402–410
Zurück zum Zitat Perperidis D, Mohiaddin RH, Rueckert D (2005b) Spatio-temporal free-form registration of cardiac MR image sequences. Med Image Anal 9(5):441–456 Perperidis D, Mohiaddin RH, Rueckert D (2005b) Spatio-temporal free-form registration of cardiac MR image sequences. Med Image Anal 9(5):441–456
Zurück zum Zitat Petra N, Martin J, Stadler G, Ghattas O (2014) A computational framework for infinite-dimensional Bayesian inverse problems Part II: stochastic Newton MCMC with application to ice sheet flow inverse problems. SIAM J Sci Comput 36(4):A1525–A1555MathSciNetMATH Petra N, Martin J, Stadler G, Ghattas O (2014) A computational framework for infinite-dimensional Bayesian inverse problems Part II: stochastic Newton MCMC with application to ice sheet flow inverse problems. SIAM J Sci Comput 36(4):A1525–A1555MathSciNetMATH
Zurück zum Zitat Pock T, Urschler M, Zach C, Beichel R, Bischof H (2007) A duality based algorithm for TV-L\(^1\)-optical-flow image registration. Proceedings of the medical image computing and computer-assisted intervention, vol LNCS 4792:511–518 Pock T, Urschler M, Zach C, Beichel R, Bischof H (2007) A duality based algorithm for TV-L\(^1\)-optical-flow image registration. Proceedings of the medical image computing and computer-assisted intervention, vol LNCS 4792:511–518
Zurück zum Zitat Powathil G, Kohandel M, Sivaloganathan S, Oza A, Milosevic M (2007) Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy. Phys Med Biol 52(11):3291 Powathil G, Kohandel M, Sivaloganathan S, Oza A, Milosevic M (2007) Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy. Phys Med Biol 52(11):3291
Zurück zum Zitat Quiroga AAI, Fernández D, Torres GA, Turner CV (2015) Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method. Appl Math Comput 270:358–368MathSciNet Quiroga AAI, Fernández D, Torres GA, Turner CV (2015) Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method. Appl Math Comput 270:358–368MathSciNet
Zurück zum Zitat Rahman MM, Feng Y, Yankeelov TE, Oden JT (2017) A fully coupled space-time multiscale modeling framework for predicting tumor growth. Comput Methods Appl Mech Eng 320:261–286MathSciNet Rahman MM, Feng Y, Yankeelov TE, Oden JT (2017) A fully coupled space-time multiscale modeling framework for predicting tumor growth. Comput Methods Appl Mech Eng 320:261–286MathSciNet
Zurück zum Zitat Rekik I, Allassonnière S, Clatz O, Geremia E, Stretton E, Delingette H, Ayache N (2013) Tumor growth parameters estimation and source localization from a unique time point: Application to low-grade gliomas. Comput Vis Image Underst 117(3):238–249 Rekik I, Allassonnière S, Clatz O, Geremia E, Stretton E, Delingette H, Ayache N (2013) Tumor growth parameters estimation and source localization from a unique time point: Application to low-grade gliomas. Comput Vis Image Underst 117(3):238–249
Zurück zum Zitat Ren K, Bal G, Hielscher AH (2006) Frequency domain optical tomography based on the equation of radiative transfer. SIAM J Sci Comput 28(4):1463–1489MathSciNetMATH Ren K, Bal G, Hielscher AH (2006) Frequency domain optical tomography based on the equation of radiative transfer. SIAM J Sci Comput 28(4):1463–1489MathSciNetMATH
Zurück zum Zitat Rockne R, Rockhill JK, Mrugala M, Spence AM, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord EC, Swanson KR (2010) Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55(12):3271 Rockne R, Rockhill JK, Mrugala M, Spence AM, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord EC, Swanson KR (2010) Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55(12):3271
Zurück zum Zitat Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular tumor growth. SIAM Rev 49(2):179–208MathSciNetMATH Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular tumor growth. SIAM Rev 49(2):179–208MathSciNetMATH
Zurück zum Zitat Rühaak J, König L, Tramnitzke F, Köstler H, Modersitzki J (2017) A matrix-free approach to efficient affine-linear image registration on CPU and GPU. J Real Time Image Proc 13(1):205–225 Rühaak J, König L, Tramnitzke F, Köstler H, Modersitzki J (2017) A matrix-free approach to efficient affine-linear image registration on CPU and GPU. J Real Time Image Proc 13(1):205–225
Zurück zum Zitat Ruhnau P, Schnörr C (2007) Optical Stokes flow estimation: an imaging-based control approach. Exp Fluids 42:61–78 Ruhnau P, Schnörr C (2007) Optical Stokes flow estimation: an imaging-based control approach. Exp Fluids 42:61–78
Zurück zum Zitat Saratoon T, Tarvainen, T, Cox BT, Arridge SR (2013) A gradient-based method for quantitative photoacoustic tomography using the radiative transfer equation. Inverse Probl 29(7): 075,006 Saratoon T, Tarvainen, T, Cox BT, Arridge SR (2013) A gradient-based method for quantitative photoacoustic tomography using the radiative transfer equation. Inverse Probl 29(7): 075,006
Zurück zum Zitat Scheufele K, Mang A, Gholami A, Davatzikos C, Biros G, Mehl M (2018) Coupling brain-tumor biophysical models and diffeomorphic image registration. arXiv: 1710.06420 Scheufele K, Mang A, Gholami A, Davatzikos C, Biros G, Mehl M (2018) Coupling brain-tumor biophysical models and diffeomorphic image registration. arXiv:​ 1710.​06420
Zurück zum Zitat Sermesant M, Delingette H, Ayache N (2006a) An electromechanical model of the heart for image analysis and simulation. IEEE Trans Med Imaging 25(5):612–625 Sermesant M, Delingette H, Ayache N (2006a) An electromechanical model of the heart for image analysis and simulation. IEEE Trans Med Imaging 25(5):612–625
Zurück zum Zitat Sermesant M, Moireau P, Camara O, Sainte-Marie J, Andriantsimiavona R, Cimrman R, Hill DL, Chapelle D, Razavi R (2006b) Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med Image Anal 10(4):642–656MATH Sermesant M, Moireau P, Camara O, Sainte-Marie J, Andriantsimiavona R, Cimrman R, Hill DL, Chapelle D, Razavi R (2006b) Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med Image Anal 10(4):642–656MATH
Zurück zum Zitat Shackleford J, Kandasamy N, Sharp G (2013) High performance deformable image registration algorithms for manycore processors. Morgan Kaufmann, Waltham Shackleford J, Kandasamy N, Sharp G (2013) High performance deformable image registration algorithms for manycore processors. Morgan Kaufmann, Waltham
Zurück zum Zitat Shah DJ, Judd RM, Kim RJ (2005) Technology insight: MRI of the myocardium. Nat Clin Pract Cardiovasc Med 2(11):597–605 Shah DJ, Judd RM, Kim RJ (2005) Technology insight: MRI of the myocardium. Nat Clin Pract Cardiovasc Med 2(11):597–605
Zurück zum Zitat Shams R, Sadeghi P, Kennedy R, Hartley R (2010a) Parallel computation of mutual information on the GPU with application to real-time registration of 3D medical images. Comput Methods Programs Biomed 99:133–146 Shams R, Sadeghi P, Kennedy R, Hartley R (2010a) Parallel computation of mutual information on the GPU with application to real-time registration of 3D medical images. Comput Methods Programs Biomed 99:133–146
Zurück zum Zitat Shams R, Sadeghi P, Kennedy RA, Hartley RI (2010b) A survey of medical image registration on multicore and the GPU. Signal Process Mag IEEE 27(2):50–60 Shams R, Sadeghi P, Kennedy RA, Hartley RI (2010b) A survey of medical image registration on multicore and the GPU. Signal Process Mag IEEE 27(2):50–60
Zurück zum Zitat Shen DG, Sundar H, Xue Z, Fan Y, Litt H (2005) Consistent estimation of cardiac motions by 4D image registration. In: Proceedings of the Medical image computing and computer-assisted intervention (Lecture notes in computer science), vol 3750. Springer, Berlin, pp 902–910 Shen DG, Sundar H, Xue Z, Fan Y, Litt H (2005) Consistent estimation of cardiac motions by 4D image registration. In: Proceedings of the Medical image computing and computer-assisted intervention (Lecture notes in computer science), vol 3750. Springer, Berlin, pp 902–910
Zurück zum Zitat Shenk O, Manguoglu M, Sameh A, Christen M, Sathe M (2009) Parallel scalable PDE-constrained optimization: antenna identification in hyperthermia cancer treatment planning. Comput Sci Res Dev 23(3–4):177–183 Shenk O, Manguoglu M, Sameh A, Christen M, Sathe M (2009) Parallel scalable PDE-constrained optimization: antenna identification in hyperthermia cancer treatment planning. Comput Sci Res Dev 23(3–4):177–183
Zurück zum Zitat Simoncini V (2012) Reduced order solution of structured linear systems arising in certain PDE-constrained optimization problems. Comput Optim Appl 53(2):591–617MathSciNetMATH Simoncini V (2012) Reduced order solution of structured linear systems arising in certain PDE-constrained optimization problems. Comput Optim Appl 53(2):591–617MathSciNetMATH
Zurück zum Zitat Sommer S (2008) Accelerating multi-scale flows for LDDKBM diffeomorphic registration. In: Proceedings of the IEEE international conference on computer visions workshops, pp 499–505 Sommer S (2008) Accelerating multi-scale flows for LDDKBM diffeomorphic registration. In: Proceedings of the IEEE international conference on computer visions workshops, pp 499–505
Zurück zum Zitat Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190 Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190
Zurück zum Zitat Sullivan TJ (2015) Introduction to uncertainty quantification. Springer, BerlinMATH Sullivan TJ (2015) Introduction to uncertainty quantification. Springer, BerlinMATH
Zurück zum Zitat Sundar H, Davatzikos C, Biros G (2009) Biomechanically constrained 4D estimation of mycardial motion. In: Proceedings of the medical image computing and computer-assisted intervention, vol LNCS 5762, pp 257–265 Sundar H, Davatzikos C, Biros G (2009) Biomechanically constrained 4D estimation of mycardial motion. In: Proceedings of the medical image computing and computer-assisted intervention, vol LNCS 5762, pp 257–265
Zurück zum Zitat Swanson KR, Alvord EC, Murray JD (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–330 Swanson KR, Alvord EC, Murray JD (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–330
Zurück zum Zitat Swanson KR, Alvord EC, Murray JD (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86(1):14–18 Swanson KR, Alvord EC, Murray JD (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86(1):14–18
Zurück zum Zitat Swanson KR, Rostomily RC, Alvord EC (2008) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98(1):113–119 Swanson KR, Rostomily RC, Alvord EC (2008) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98(1):113–119
Zurück zum Zitat Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, PhiladelphiaMATH Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, PhiladelphiaMATH
Zurück zum Zitat Tomer R, Ye L, Hsueh B, Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9(7):1682–1697 Tomer R, Ye L, Hsueh B, Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9(7):1682–1697
Zurück zum Zitat Trouvé A (1998) Diffeomorphism groups and pattern matching in image analysis. Int J Comput Vis 28(3):213–221 Trouvé A (1998) Diffeomorphism groups and pattern matching in image analysis. Int J Comput Vis 28(3):213–221
Zurück zum Zitat Tuyisenge V, Sarry L, Corpetti T, Innorta-Coupez E, Ouchchane L, Cassagnes L (2016) Estimation of myocardial strain and contraction phase from cine MRI using variational data assimilation. IEEE Trans Med Imag 35(2):442–455 Tuyisenge V, Sarry L, Corpetti T, Innorta-Coupez E, Ouchchane L, Cassagnes L (2016) Estimation of myocardial strain and contraction phase from cine MRI using variational data assimilation. IEEE Trans Med Imag 35(2):442–455
Zurück zum Zitat ur Rehman T, Haber E, Pryor G, Melonakos J, Tannenbaum A (2009) 3D nonrigid registration via optimal mass transport on the GPU. Med Image Anal 13(6):931–940 ur Rehman T, Haber E, Pryor G, Melonakos J, Tannenbaum A (2009) 3D nonrigid registration via optimal mass transport on the GPU. Med Image Anal 13(6):931–940
Zurück zum Zitat Valero-Lara P (2014) Multi-GPU acceleration of DARTEL (early detection of Alzheimer). In: Proceedings of the IEEE international conference on cluster computing, pp 346–354 Valero-Lara P (2014) Multi-GPU acceleration of DARTEL (early detection of Alzheimer). In: Proceedings of the IEEE international conference on cluster computing, pp 346–354
Zurück zum Zitat Vercauteren T, Pennec X, Perchant A, Ayache N (2008) Symmetric log-domain diffeomorphic registration: a demons-based approach. Proceedings of the medical image computing and computer-assisted intervention, vol LNCS 5241:754–761 Vercauteren T, Pennec X, Perchant A, Ayache N (2008) Symmetric log-domain diffeomorphic registration: a demons-based approach. Proceedings of the medical image computing and computer-assisted intervention, vol LNCS 5241:754–761
Zurück zum Zitat Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1):S61–S72 Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1):S61–S72
Zurück zum Zitat Vialard FX, Risser L, Rueckert D, Cotter CJ (2012) Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int J Comput Vis 97:229–241MathSciNetMATH Vialard FX, Risser L, Rueckert D, Cotter CJ (2012) Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int J Comput Vis 97:229–241MathSciNetMATH
Zurück zum Zitat Wang Z, Deisboeck TS (2008) Computational modeling of brain tumors: discrete, continuum or hybrid. Sci Model Simul SMNS 15(1–3):381MATH Wang Z, Deisboeck TS (2008) Computational modeling of brain tumors: discrete, continuum or hybrid. Sci Model Simul SMNS 15(1–3):381MATH
Zurück zum Zitat Weis JA, Miga MI, Yankeelov TE (2017) Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy. Comput Methods Appl Mech Eng 314:494–512MathSciNet Weis JA, Miga MI, Yankeelov TE (2017) Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy. Comput Methods Appl Mech Eng 314:494–512MathSciNet
Zurück zum Zitat Wilcox LC, Stadler G, Bui-Thanh T, Ghattas O (2015) Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method. J Sci Comput 63(1):138–162MathSciNetMATH Wilcox LC, Stadler G, Bui-Thanh T, Ghattas O (2015) Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method. J Sci Comput 63(1):138–162MathSciNetMATH
Zurück zum Zitat Wong KCL, Summers RM, Kebebew E, Yao J (2015) Pancreatic tumor growth prediction with multiplicative growth and image-derived motion. Proceedings of the information processing in medical imaging, vol LNCS 9123:501–513 Wong KCL, Summers RM, Kebebew E, Yao J (2015) Pancreatic tumor growth prediction with multiplicative growth and image-derived motion. Proceedings of the information processing in medical imaging, vol LNCS 9123:501–513
Zurück zum Zitat Wong KCL, Summers RM, Kebebew E, Yoa J (2017) Pancreatic tumor growth prediction with elastic-growth decomposition, image-derived motion, and FDM-FEM coupling. IEEE Trans Med Imaging 36(1):111–123 Wong KCL, Summers RM, Kebebew E, Yoa J (2017) Pancreatic tumor growth prediction with elastic-growth decomposition, image-derived motion, and FDM-FEM coupling. IEEE Trans Med Imaging 36(1):111–123
Zurück zum Zitat Younes L (2007) Jacobi fields in groups of diffeomorphisms and applications. Q Appl Math 650(1):113–134MathSciNetMATH Younes L (2007) Jacobi fields in groups of diffeomorphisms and applications. Q Appl Math 650(1):113–134MathSciNetMATH
Zurück zum Zitat Younes L (2010) Shapes and diffeomorphisms. Springer, BerlinMATH Younes L (2010) Shapes and diffeomorphisms. Springer, BerlinMATH
Zurück zum Zitat Zacharaki EI, Hogea CS, Biros G, Davatzikos C (2008a) A comparative study of biomechanical simulators in deformable registration of brain tumor images. IEEE Trans Biomed Eng 55(3):1233–1236 Zacharaki EI, Hogea CS, Biros G, Davatzikos C (2008a) A comparative study of biomechanical simulators in deformable registration of brain tumor images. IEEE Trans Biomed Eng 55(3):1233–1236
Zurück zum Zitat Zacharaki EI, Hogea CS, Shen D, Biros G, Davatzikos C (2008b) Parallel optimization of tumor model parameters for fast registration of brain tumor images. In: Proceedings of the SPIE medical imaging, pp 69,140K1–69,140K10 Zacharaki EI, Hogea CS, Shen D, Biros G, Davatzikos C (2008b) Parallel optimization of tumor model parameters for fast registration of brain tumor images. In: Proceedings of the SPIE medical imaging, pp 69,140K1–69,140K10
Zurück zum Zitat Zacharaki EI, Hogea CS, Shen D, Biros G, Davatzikos C (2009) Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. NeuroImage 46(3):762–774 Zacharaki EI, Hogea CS, Shen D, Biros G, Davatzikos C (2009) Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. NeuroImage 46(3):762–774
Zurück zum Zitat Zhang M, Fletcher PT (2015) Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability. Med Image Anal 25(1):37–44 Zhang M, Fletcher PT (2015) Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability. Med Image Anal 25(1):37–44
Metadaten
Titel
PDE-constrained optimization in medical image analysis
verfasst von
Andreas Mang
Amir Gholami
Christos Davatzikos
George Biros
Publikationsdatum
13.06.2018
Verlag
Springer US
Erschienen in
Optimization and Engineering / Ausgabe 3/2018
Print ISSN: 1389-4420
Elektronische ISSN: 1573-2924
DOI
https://doi.org/10.1007/s11081-018-9390-9

Weitere Artikel der Ausgabe 3/2018

Optimization and Engineering 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.