Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 14/2019

08.07.2019

PEDOT:PSS coating on pristine and carbon coated LiFePO4 by one-step process: the study of electrochemical performance

verfasst von: Hari Raj, Anjan Sil

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 14/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The carbon coating on lithium iron phosphate (LiFePO4) is well known process to improve the electrical conductivity of non-conductive LiFePO4 (LFP). But due to complex process of carbon coating at high temperature, herein, we report study on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) water soluble conducting polymer coated pristine LFP as well as carbon coated LFP (LFP/C) prepared by simple one step process. PEDOT:PSS coating has played very important role in enhancing the electrochemical performance of Li-ion battery as well as electrical conductivity of LFP and LFP/C samples. The electrical conductivity of PEDOT:PSS coated LiFePO4 samples is increased by many folds (104−108) as compared to pristine and carbon coated LFP. The study reveals that different optimum amount of PEDOT:PSS say 10 wt% and 5 wt% is required for best electrochemical performance of pristine LFP and LFP/C, and samples are designated as LFP-10P and LFP/C-5P respectively. Sample LFP-10P has shown discharge capacity of 140.8 mAh g−1 whereas LFP/C-5P shown 154.6 mAh g−1 at current rate of 0.1C. The same samples have shown highest capacity retention of 92% and 96% respectively after 200 cycles, in their group.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Yamada, H. Koizumi, S.I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Room-temperature miscibility gap in LixFePO4. Nat. Mater. 5, 357–360 (2006)CrossRef A. Yamada, H. Koizumi, S.I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Room-temperature miscibility gap in LixFePO4. Nat. Mater. 5, 357–360 (2006)CrossRef
2.
Zurück zum Zitat K. Tang, J. Sun, X. Yu, H. Li, X. Huang, Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity. Electrochim. Acta 54, 6565–6569 (2009)CrossRef K. Tang, J. Sun, X. Yu, H. Li, X. Huang, Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity. Electrochim. Acta 54, 6565–6569 (2009)CrossRef
3.
Zurück zum Zitat C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative issues of cathode materials for Li-Ion batteries. Inorganics 2(1), 132–154 (2014)CrossRef C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative issues of cathode materials for Li-Ion batteries. Inorganics 2(1), 132–154 (2014)CrossRef
4.
Zurück zum Zitat A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1193 (1997)CrossRef A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1193 (1997)CrossRef
5.
Zurück zum Zitat B.L. Ellis, K.T. Lee, L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010)CrossRef B.L. Ellis, K.T. Lee, L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010)CrossRef
6.
Zurück zum Zitat J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef
7.
Zurück zum Zitat S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002)CrossRef S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002)CrossRef
8.
Zurück zum Zitat A.V. Churikov, A.V. Ivanishchev, I.A. Ivanishcheva, V.O. Sycheva, N.R. Khasanova, E.V. Antipov, Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim. Acta 55, 2939–2950 (2010)CrossRef A.V. Churikov, A.V. Ivanishchev, I.A. Ivanishcheva, V.O. Sycheva, N.R. Khasanova, E.V. Antipov, Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim. Acta 55, 2939–2950 (2010)CrossRef
9.
Zurück zum Zitat R. Amin, P. Balaya, J. Maier, Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochem. Solid-State Lett. 10, A13–A16 (2000)CrossRef R. Amin, P. Balaya, J. Maier, Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochem. Solid-State Lett. 10, A13–A16 (2000)CrossRef
10.
Zurück zum Zitat C. Delmas, M. Maccario, L. Croguennec, F.L. Cras, F. Weill, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665–671 (2008)CrossRef C. Delmas, M. Maccario, L. Croguennec, F.L. Cras, F. Weill, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665–671 (2008)CrossRef
11.
Zurück zum Zitat Y.H. Huang, J.B. Goodenough, High-Rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem. Mater. 20, 7237–7241 (2008)CrossRef Y.H. Huang, J.B. Goodenough, High-Rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem. Mater. 20, 7237–7241 (2008)CrossRef
12.
Zurück zum Zitat H. Raj, A. Sil, Effect of carbon coating on electrochemical performance of LiFePO4 cathode material for Li-ion battery. Ionics 24, 2543–2553 (2018)CrossRef H. Raj, A. Sil, Effect of carbon coating on electrochemical performance of LiFePO4 cathode material for Li-ion battery. Ionics 24, 2543–2553 (2018)CrossRef
13.
Zurück zum Zitat S.Y. Chunga, Y.M. Chiang, Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochem. Solid-State Lett. 6, A278–A281 (2003)CrossRef S.Y. Chunga, Y.M. Chiang, Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochem. Solid-State Lett. 6, A278–A281 (2003)CrossRef
14.
Zurück zum Zitat P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147–152 (2004)CrossRef P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147–152 (2004)CrossRef
15.
Zurück zum Zitat J. Wang, S. Xueliang, Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8, 1110–1138 (2015)CrossRef J. Wang, S. Xueliang, Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8, 1110–1138 (2015)CrossRef
16.
Zurück zum Zitat G.T.K. Fey, T.L. Lu, F.Y. Wu, W.H. Li, Carboxylic acid-assisted solid-state synthesis of LiFePO4/C composites and their electrochemical properties as cathode materials for lithium-ion batteries. J Solid State Electrochem. 12, 825–833 (2008)CrossRef G.T.K. Fey, T.L. Lu, F.Y. Wu, W.H. Li, Carboxylic acid-assisted solid-state synthesis of LiFePO4/C composites and their electrochemical properties as cathode materials for lithium-ion batteries. J Solid State Electrochem. 12, 825–833 (2008)CrossRef
17.
Zurück zum Zitat R. Sehrawat, A. Sil, Synthesis and characterization of LiFePO4-C/PANI composite for cathode material of lithium ion battery. Adv. Mater. Res. 585, 240–244 (2012)CrossRef R. Sehrawat, A. Sil, Synthesis and characterization of LiFePO4-C/PANI composite for cathode material of lithium ion battery. Adv. Mater. Res. 585, 240–244 (2012)CrossRef
18.
Zurück zum Zitat P. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 47, 2930 (2008)CrossRef P. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 47, 2930 (2008)CrossRef
19.
Zurück zum Zitat R. Sehrawat, A. Sil, Polymer gel combustion synthesis of LiFePO4/C composite as cathode material for Li-ion battery. Ionics 21, 673–685 (2015)CrossRef R. Sehrawat, A. Sil, Polymer gel combustion synthesis of LiFePO4/C composite as cathode material for Li-ion battery. Ionics 21, 673–685 (2015)CrossRef
20.
Zurück zum Zitat J. Zhou, D.H. Anjum, G. Lubineau, E.Q. Li, S.T. Thoroddsen, Unraveling the order and disorder in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) nanofilms. Macromolecules 48, 5688–5696 (2015)CrossRef J. Zhou, D.H. Anjum, G. Lubineau, E.Q. Li, S.T. Thoroddsen, Unraveling the order and disorder in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) nanofilms. Macromolecules 48, 5688–5696 (2015)CrossRef
21.
Zurück zum Zitat J. Zhou, E.Q. Li, R. Li, X. Xu, I.A. Ventura, A. Moussawi, D.H. Anjum, M.N. Hedhili, D.M. Smilgies, G. Lubineau, S.T. Thoroddsen, Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. J. Mater. Chem. C 3, 2528–2538 (2015)CrossRef J. Zhou, E.Q. Li, R. Li, X. Xu, I.A. Ventura, A. Moussawi, D.H. Anjum, M.N. Hedhili, D.M. Smilgies, G. Lubineau, S.T. Thoroddsen, Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. J. Mater. Chem. C 3, 2528–2538 (2015)CrossRef
22.
Zurück zum Zitat K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, D. Du, F.H. Isikgor, J. Ouyang, Review on application of pedots and pedot: Pss in energy conversion and storage devices. J. Mater. Sci. 26, 4438–4462 (2015) K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, D. Du, F.H. Isikgor, J. Ouyang, Review on application of pedots and pedot: Pss in energy conversion and storage devices. J. Mater. Sci. 26, 4438–4462 (2015)
23.
Zurück zum Zitat F.M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh, I.J. Davidson, Water-soluble binders for Mcmb carbon anodes for lithium-ion batteries. J. Power Sources 196, 2128–2134 (2011)CrossRef F.M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh, I.J. Davidson, Water-soluble binders for Mcmb carbon anodes for lithium-ion batteries. J. Power Sources 196, 2128–2134 (2011)CrossRef
24.
Zurück zum Zitat N. Vicente, M. Haro, D. Cíntora-Juárez, C. Pérez-Vicente, J.L. Tirado, S. Ahmad, G. Garcia-Belmonte, LiFePO4 particle conductive composite strategies for improving cathode rate capability. Electrochim. Acta 163, 323–329 (2015)CrossRef N. Vicente, M. Haro, D. Cíntora-Juárez, C. Pérez-Vicente, J.L. Tirado, S. Ahmad, G. Garcia-Belmonte, LiFePO4 particle conductive composite strategies for improving cathode rate capability. Electrochim. Acta 163, 323–329 (2015)CrossRef
25.
Zurück zum Zitat J.M. Kim, H.S. Park, J.H. Park, T.H. Kim, H.K. Song, S.Y. Lee, Conducting polymer-skinned electroactive materials of lithium-ion batteries: ready for monocomponent electrodes without additional binders and conductive agents. ACS Appl. Mater. Interfaces 6, 12789–12797 (2014)CrossRef J.M. Kim, H.S. Park, J.H. Park, T.H. Kim, H.K. Song, S.Y. Lee, Conducting polymer-skinned electroactive materials of lithium-ion batteries: ready for monocomponent electrodes without additional binders and conductive agents. ACS Appl. Mater. Interfaces 6, 12789–12797 (2014)CrossRef
26.
Zurück zum Zitat P.R. Das, L. Komsiyska, O. Osters, G. Wittstock, PEDOT: PSS as a functional binder for cathodes in lithium ion batteries. J. Electrochem. Soc. 162, A674–A678 (2015)CrossRef P.R. Das, L. Komsiyska, O. Osters, G. Wittstock, PEDOT: PSS as a functional binder for cathodes in lithium ion batteries. J. Electrochem. Soc. 162, A674–A678 (2015)CrossRef
27.
Zurück zum Zitat K.S. Park, S.B. Schougaard, J.B. Goodenough, Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Adv. Mater. 191, 848–851 (2007)CrossRef K.S. Park, S.B. Schougaard, J.B. Goodenough, Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Adv. Mater. 191, 848–851 (2007)CrossRef
28.
Zurück zum Zitat A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochem. Commun. 10, 903–906 (2008)CrossRef A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochem. Commun. 10, 903–906 (2008)CrossRef
29.
Zurück zum Zitat I. Boyano, J.A. Blazquez, I. de Meatza, M. Bengoechea, O. Miguel, H. Grande, Y.H. Huang, J.B. Goodenough, Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition. J. Power Sources 195, 5351–5359 (2010)CrossRef I. Boyano, J.A. Blazquez, I. de Meatza, M. Bengoechea, O. Miguel, H. Grande, Y.H. Huang, J.B. Goodenough, Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition. J. Power Sources 195, 5351–5359 (2010)CrossRef
30.
Zurück zum Zitat H. Raj, S. Rani, A. Sil, Antisite defects in Sol–Gel-synthesized LiFePO4 at higher temperature: effect on lithium-ion diffusion. ChemElectroChem 5, 3525–3532 (2018)CrossRef H. Raj, S. Rani, A. Sil, Antisite defects in Sol–Gel-synthesized LiFePO4 at higher temperature: effect on lithium-ion diffusion. ChemElectroChem 5, 3525–3532 (2018)CrossRef
31.
Zurück zum Zitat P. Thompson, D.E. Cox, J.B. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 20, 79–83 (1987)CrossRef P. Thompson, D.E. Cox, J.B. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 20, 79–83 (1987)CrossRef
32.
Zurück zum Zitat S. Hamelet, P. Gibot, M.C. Cabanas, D. Bonnin, C.P. Grey, J. Cabana, J.B. Leriche, J.R. Carvajal, M. Courty, S. Levasseur, P. Carlach, M.V. Thournout, J.M. Tarascona, C. Masquelier, The effects of moderate thermal treatments under air on LiFePO4-based nano powders. J. Mater. Chem. 19, 3979–3991 (2009)CrossRef S. Hamelet, P. Gibot, M.C. Cabanas, D. Bonnin, C.P. Grey, J. Cabana, J.B. Leriche, J.R. Carvajal, M. Courty, S. Levasseur, P. Carlach, M.V. Thournout, J.M. Tarascona, C. Masquelier, The effects of moderate thermal treatments under air on LiFePO4-based nano powders. J. Mater. Chem. 19, 3979–3991 (2009)CrossRef
33.
Zurück zum Zitat L.N. Wang, X.C. Zhan, Z.G. Zhang, K.L. Zhang, A soft chemistry synthesis routine for LiFePO4-C using a novel carbon source. J Alloys Compds 456, 461–465 (2008)CrossRef L.N. Wang, X.C. Zhan, Z.G. Zhang, K.L. Zhang, A soft chemistry synthesis routine for LiFePO4-C using a novel carbon source. J Alloys Compds 456, 461–465 (2008)CrossRef
34.
Zurück zum Zitat D. Wang, L. Cao, J. Huang, J. Wu, Effects of different chelating agents on the composition, morphology and electrochemical properties of LiV3O8 crystallites synthesized via sol–gel method. Ceram. Int. 39, 3759–3764 (2013)CrossRef D. Wang, L. Cao, J. Huang, J. Wu, Effects of different chelating agents on the composition, morphology and electrochemical properties of LiV3O8 crystallites synthesized via sol–gel method. Ceram. Int. 39, 3759–3764 (2013)CrossRef
35.
Zurück zum Zitat C.H. Mi, X.B. Zhao, G.S. Cao, J.P. Tu, In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes. J. Electrochem. Soc. 152(3), A483–A487 (2005)CrossRef C.H. Mi, X.B. Zhao, G.S. Cao, J.P. Tu, In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes. J. Electrochem. Soc. 152(3), A483–A487 (2005)CrossRef
36.
Zurück zum Zitat S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J Adv. Ceram. 2(3), 291–300 (2013)CrossRef S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J Adv. Ceram. 2(3), 291–300 (2013)CrossRef
37.
Zurück zum Zitat R. Jacob, H.G. Nair, J. Isac, Impedance spectroscopy and dielectric studies of nanocrystalline iron doped barium strontium titanate ceramics. Process. Appl. Ceram. 9(2), 73–79 (2015)CrossRef R. Jacob, H.G. Nair, J. Isac, Impedance spectroscopy and dielectric studies of nanocrystalline iron doped barium strontium titanate ceramics. Process. Appl. Ceram. 9(2), 73–79 (2015)CrossRef
38.
Zurück zum Zitat A.M. Nardes, M. Kemerink, R.A.J. Janssen, Anisotropic hopping conduction in spin-coated PEDOT:PSS thin films. Phys. Rev. B 76, 085208 (2007)CrossRef A.M. Nardes, M. Kemerink, R.A.J. Janssen, Anisotropic hopping conduction in spin-coated PEDOT:PSS thin films. Phys. Rev. B 76, 085208 (2007)CrossRef
39.
Zurück zum Zitat C.S.S. Sangeeth, M. Jaiswal, R. Menon, Correlation of morphology and charge transport in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. J. Phys. 21(7), 072101 (2009) C.S.S. Sangeeth, M. Jaiswal, R. Menon, Correlation of morphology and charge transport in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. J. Phys. 21(7), 072101 (2009)
40.
Zurück zum Zitat H.C. Shin, W.I. Chob, H. Jang, Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim. Acta 52, 1472–1476 (2006)CrossRef H.C. Shin, W.I. Chob, H. Jang, Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim. Acta 52, 1472–1476 (2006)CrossRef
41.
Zurück zum Zitat O.V. Levin, S.N. Eliseeva, E.V. Alekseeva, E.G. Tolstopjatova, V.V. Kondratiev, Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components. Int. J. Electrochem. Sci. 10, 8175–8189 (2015) O.V. Levin, S.N. Eliseeva, E.V. Alekseeva, E.G. Tolstopjatova, V.V. Kondratiev, Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components. Int. J. Electrochem. Sci. 10, 8175–8189 (2015)
42.
Zurück zum Zitat G.L. Xu, Y. Li, T. Ma, Y. Ren, H.H. Wang, L. Wang, J. Wen, D. Miller, K. Amine, Z. Chen, PEDOT-PSS Coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy 18, 253–264 (2015)CrossRef G.L. Xu, Y. Li, T. Ma, Y. Ren, H.H. Wang, L. Wang, J. Wen, D. Miller, K. Amine, Z. Chen, PEDOT-PSS Coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy 18, 253–264 (2015)CrossRef
43.
Zurück zum Zitat D.H. Yoon, S.H. Yoon, K.S. Ryu, Y.J. Park, PEDOT: PSS as multi-functional composite material for enhanced li-air-battery air electrodes. Sci. Rep. 6, 19962 (2016)CrossRef D.H. Yoon, S.H. Yoon, K.S. Ryu, Y.J. Park, PEDOT: PSS as multi-functional composite material for enhanced li-air-battery air electrodes. Sci. Rep. 6, 19962 (2016)CrossRef
44.
Zurück zum Zitat L. Wang, G.C. Liang, X.Q. Ou, X.K. Zhi, J.P. Zhang, J.Y. Cui, Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. J. Power Sources 189, 423–428 (2009)CrossRef L. Wang, G.C. Liang, X.Q. Ou, X.K. Zhi, J.P. Zhang, J.Y. Cui, Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. J. Power Sources 189, 423–428 (2009)CrossRef
45.
Zurück zum Zitat F. Wu, J. Liu, X. Zhang, R. Luo, Y. Ye, R. Chen, Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT:PSS. Conduct. Polym. ACS Appl. Mater. Interfaces 8, 23095–23104 (2016)CrossRef F. Wu, J. Liu, X. Zhang, R. Luo, Y. Ye, R. Chen, Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT:PSS. Conduct. Polym. ACS Appl. Mater. Interfaces 8, 23095–23104 (2016)CrossRef
46.
Zurück zum Zitat H. Huang, S.C. Yin, L.F. Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 4(10), A170–A172 (2001)CrossRef H. Huang, S.C. Yin, L.F. Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 4(10), A170–A172 (2001)CrossRef
47.
Zurück zum Zitat F. Gao, Z. Tang, Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim. Acta 53, 5071–5075 (2008)CrossRef F. Gao, Z. Tang, Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim. Acta 53, 5071–5075 (2008)CrossRef
48.
Zurück zum Zitat H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q.J. Wu, Kinetic study on LiFePO4/C nano composites synthesized by solid state technique. J. Power Sources 159, 717–720 (2006)CrossRef H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q.J. Wu, Kinetic study on LiFePO4/C nano composites synthesized by solid state technique. J. Power Sources 159, 717–720 (2006)CrossRef
49.
Zurück zum Zitat F. Yu, S.H. Lim, Y.D. Zhen, Y.S. An, J.Y. Lin, Optimized electrochemical performance of three-dimensional porous LiFePO4/C microspheres via microwave irradiation assisted synthesis. J. Power Sources 271, 223–230 (2014)CrossRef F. Yu, S.H. Lim, Y.D. Zhen, Y.S. An, J.Y. Lin, Optimized electrochemical performance of three-dimensional porous LiFePO4/C microspheres via microwave irradiation assisted synthesis. J. Power Sources 271, 223–230 (2014)CrossRef
50.
Zurück zum Zitat S. Sarkar, H. Banda, S. Mitra, High capacity lithium-ion battery cathode using LiV3O8 nanorods. Electrochim. Acta 99, 242–252 (2013)CrossRef S. Sarkar, H. Banda, S. Mitra, High capacity lithium-ion battery cathode using LiV3O8 nanorods. Electrochim. Acta 99, 242–252 (2013)CrossRef
Metadaten
Titel
PEDOT:PSS coating on pristine and carbon coated LiFePO4 by one-step process: the study of electrochemical performance
verfasst von
Hari Raj
Anjan Sil
Publikationsdatum
08.07.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 14/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01730-1

Weitere Artikel der Ausgabe 14/2019

Journal of Materials Science: Materials in Electronics 14/2019 Zur Ausgabe

Neuer Inhalt