Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2017

20.10.2016 | Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass

verfasst von: Peng Chen, Xiaoping Liang, Jun Wang, Di Zhang, Shanmin Yang, Weishan Wu, Wei Zhang, Xiaowei Fan, Dequan Zhang

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To develop high performance mixed matrix gel polymer electrolyte, the synergistic effect of blending PVDF (PEO/PVDF weigh ratio of 85:15) and adding nano-TiO2 (0.5–2 wt.%) to traditional monomer poly (ethylene oxide) was investigated. Thermogravimetric analysis indicated that poly (ethylene oxide)/poly (vinylidene fluoride) blend had an excellent thermal performance. X-ray diffraction analysis revealed that poly (ethylene oxide)/poly (vinylidene fluoride) blend leads to lower crystallinity and the amorphicity of corresponding gel polymer electrolyte increases with increasing nano-TiO2 concentration. The maximum ionic conductivity (2.12 × 10−6 and 6.37 × 10−6 S/cm) of poly (ethylene oxide)/-(TiO2)0.5 and poly (ethylene oxide)/poly (vinylidene fluoride)/-(TiO2)0.5 gel polymer electrolyte at room temperature (25 °C) were obtained, respectively. The prepared poly (ethylene oxide)/poly (vinylidene fluoride)-TiO2 gel polymer electrolyte demonstrated about 2.6 and 1.8-fold increment in the fracture strength as compared to that of poly (ethylene oxide) gel polymer electrolyte and poly (ethylene oxide)-TiO2 gel polymer electrolyte. The average transmittance of poly (ethylene oxide)/poly (vinylidene fluoride)-TiO2 gel polymer electrolyte was about 90 % in the visible region. With good electrical, mechanical and optical performance, it is very suitable for being applied in electrochromic glass.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-016-4235-5/MediaObjects/10971_2016_4235_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rao CVS, Ravi M, Raja V, Bhargav PB, Sharma AK, Rao VN (2012) Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym J 21:531–536CrossRef Rao CVS, Ravi M, Raja V, Bhargav PB, Sharma AK, Rao VN (2012) Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym J 21:531–536CrossRef
2.
Zurück zum Zitat Yap YL, You AH, Teo LL, Hanapei H (2013) Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int J Electrochem Sci 8:2154–2163 Yap YL, You AH, Teo LL, Hanapei H (2013) Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int J Electrochem Sci 8:2154–2163
3.
Zurück zum Zitat Stephan AM, Kumar SG, Renganathan NG, Kulandainathan MA (2005) Characterization of poly (vinylidene fluoride–hexafluoropropylene) (PVDF-HFP) electrolytes complexed with different lithium salts. Eur Polym J 41:15–21CrossRef Stephan AM, Kumar SG, Renganathan NG, Kulandainathan MA (2005) Characterization of poly (vinylidene fluoride–hexafluoropropylene) (PVDF-HFP) electrolytes complexed with different lithium salts. Eur Polym J 41:15–21CrossRef
4.
Zurück zum Zitat Hashmi SA (2004) Supercapacitor: an emerging power source. Natl Acad Sci Lett 27:27–46 Hashmi SA (2004) Supercapacitor: an emerging power source. Natl Acad Sci Lett 27:27–46
5.
Zurück zum Zitat Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
6.
Zurück zum Zitat Li ZH, Zhang P, Zhang HP, Wu YP, Zhou XD (2008) A lotus root-like porous nanocomposites polymer electrolyte. Electrochem Commun 10:791–794CrossRef Li ZH, Zhang P, Zhang HP, Wu YP, Zhou XD (2008) A lotus root-like porous nanocomposites polymer electrolyte. Electrochem Commun 10:791–794CrossRef
7.
Zurück zum Zitat Yang CR, Perng JT, Wang YY, Wan CC (1996) Conductive behaviour of lithium ions in polyacrylonitrile. J Power Sources 62:89–93CrossRef Yang CR, Perng JT, Wang YY, Wan CC (1996) Conductive behaviour of lithium ions in polyacrylonitrile. J Power Sources 62:89–93CrossRef
8.
Zurück zum Zitat Gao K, Hu X, Yi TF, Dai C (2006) PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochim Acta 52:443–449CrossRef Gao K, Hu X, Yi TF, Dai C (2006) PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochim Acta 52:443–449CrossRef
9.
Zurück zum Zitat Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly (methyl methacrylate)-based gel electrolytes. Electrochim Acta 40:991–997CrossRef Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly (methyl methacrylate)-based gel electrolytes. Electrochim Acta 40:991–997CrossRef
10.
Zurück zum Zitat Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 278:260–267CrossRef Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 278:260–267CrossRef
11.
Zurück zum Zitat Polu AR, Rhee HW (2015) Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n=13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323–329CrossRef Polu AR, Rhee HW (2015) Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n=13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323–329CrossRef
12.
Zurück zum Zitat Park CH, Lim JY, Lee JH, Lee JM, Park JT, Kim JH (2016) Synthesis and application of PEGBEM-g-POEM graft copolymer electrolytes for dye-sensitized solar cells. Solid State Ionics 290:24–30.CrossRef Park CH, Lim JY, Lee JH, Lee JM, Park JT, Kim JH (2016) Synthesis and application of PEGBEM-g-POEM graft copolymer electrolytes for dye-sensitized solar cells. Solid State Ionics 290:24–30.CrossRef
13.
Zurück zum Zitat Deng F, Wang X, He D, Hu J, Gong C, Ye YS, Xue Z (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Membrane Sci 491:82–89CrossRef Deng F, Wang X, He D, Hu J, Gong C, Ye YS, Xue Z (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Membrane Sci 491:82–89CrossRef
14.
Zurück zum Zitat Cheng S, Smith DM, Li CY (2015) Anisotropic ion transport in a Poly (ethylene oxide)-LiClO4 solid state electrolyte templated by graphene oxide. Macromolecules 48(13):4503–4510CrossRef Cheng S, Smith DM, Li CY (2015) Anisotropic ion transport in a Poly (ethylene oxide)-LiClO4 solid state electrolyte templated by graphene oxide. Macromolecules 48(13):4503–4510CrossRef
15.
Zurück zum Zitat Zhao H, Ding X, Yang P, Li L, Li X, Zhang Y (2015) A novel multi-armed and star-like poly (ethylene oxide) membrane for CO2 separation.J Membr Sci 489:258–263CrossRef Zhao H, Ding X, Yang P, Li L, Li X, Zhang Y (2015) A novel multi-armed and star-like poly (ethylene oxide) membrane for CO2 separation.J Membr Sci 489:258–263CrossRef
16.
Zurück zum Zitat Jeon H, Lee CS, Patel R, Kim JH (2015) Well-organized meso-macroporous TiO2/SiO2 film derived from amphiphilic bubbery comb copolymer. ACS Appl Mater Inter 7(14):7767–7775CrossRef Jeon H, Lee CS, Patel R, Kim JH (2015) Well-organized meso-macroporous TiO2/SiO2 film derived from amphiphilic bubbery comb copolymer. ACS Appl Mater Inter 7(14):7767–7775CrossRef
17.
Zurück zum Zitat Chi WS, Kim SJ, Lee SJ, Bae YS, Kim JH (2015) Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach. ChemSusChem 8(4):650–658CrossRef Chi WS, Kim SJ, Lee SJ, Bae YS, Kim JH (2015) Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach. ChemSusChem 8(4):650–658CrossRef
18.
Zurück zum Zitat Lee L, Park SJ, Kim S (2013) Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ionics 234(10):19–24CrossRef Lee L, Park SJ, Kim S (2013) Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ionics 234(10):19–24CrossRef
19.
Zurück zum Zitat Tang M, Liau WR (2000) Solvent effect on the miscibility of poly (4-hydroxystyrene)-poly (ethylene oxide) blends. Eur Polym J 36(12):2597–2603CrossRef Tang M, Liau WR (2000) Solvent effect on the miscibility of poly (4-hydroxystyrene)-poly (ethylene oxide) blends. Eur Polym J 36(12):2597–2603CrossRef
20.
Zurück zum Zitat Bai BC, Kim JG, Im Ji S, Lee YS (2011) The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers. Carbon Lett 12(3):171–176CrossRef Bai BC, Kim JG, Im Ji S, Lee YS (2011) The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers. Carbon Lett 12(3):171–176CrossRef
21.
Zurück zum Zitat Rocco AM, Pereira RP, Felisberti MI (2001) Miscibility, crystallinity and morphological behavior of binary blends of poly (ethylene oxide) and poly (methyl vinyl ether-maleic acid). Polymer (Guildf) 42(12):5199–5205CrossRef Rocco AM, Pereira RP, Felisberti MI (2001) Miscibility, crystallinity and morphological behavior of binary blends of poly (ethylene oxide) and poly (methyl vinyl ether-maleic acid). Polymer (Guildf) 42(12):5199–5205CrossRef
22.
Zurück zum Zitat Tamilselvi P, Hema M (2014) Conductivity studies of LiCF3SO3 doped PVA:PVdF blend polymer electrolyte. Physica B: Condensed Matter 437:53–57CrossRef Tamilselvi P, Hema M (2014) Conductivity studies of LiCF3SO3 doped PVA:PVdF blend polymer electrolyte. Physica B: Condensed Matter 437:53–57CrossRef
23.
Zurück zum Zitat Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochim Acta 48:205–209CrossRef Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochim Acta 48:205–209CrossRef
24.
Zurück zum Zitat Muthuvinayagam M, Gopinathan C (2015) Characterization of proton conducting polymer blend electrolytes based on PVDF-PVA. Polymer (Guildf) 68:122–130CrossRef Muthuvinayagam M, Gopinathan C (2015) Characterization of proton conducting polymer blend electrolytes based on PVDF-PVA. Polymer (Guildf) 68:122–130CrossRef
25.
Zurück zum Zitat Liao Y, Chen T, Luo X, Fu Z, Li X, Li W (2016) Cycling performance improvement of polypropylene supported poly (vinylidenefluoride-co-hexafluoropropylene)/maleic anhydride-grated-polyvinylidene fluoride based gel electrolyte by incorporating nano-Al2O3 for full batteries. J Membr Sci 507:126–134CrossRef Liao Y, Chen T, Luo X, Fu Z, Li X, Li W (2016) Cycling performance improvement of polypropylene supported poly (vinylidenefluoride-co-hexafluoropropylene)/maleic anhydride-grated-polyvinylidene fluoride based gel electrolyte by incorporating nano-Al2O3 for full batteries. J Membr Sci 507:126–134CrossRef
26.
Zurück zum Zitat Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2010) Effect of nano-silicafiller in polymer electrolyte on Li dendrite formation in Li/poly (ethylene oxide)–Li(CF3SO2)2 N/Li. J Power Sources 195(19):6847–6853CrossRef Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2010) Effect of nano-silicafiller in polymer electrolyte on Li dendrite formation in Li/poly (ethylene oxide)–Li(CF3SO2)2 N/Li. J Power Sources 195(19):6847–6853CrossRef
27.
Zurück zum Zitat Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97:644–648CrossRef Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97:644–648CrossRef
28.
Zurück zum Zitat Vickraman P, Senthilkumar V (2010) A study on the role of BaTiO3 in lithum bis (perfluoroethanesulfonyl) imide-based PVDF-HFP nanocomposites. Ionics 16(8):763–768CrossRef Vickraman P, Senthilkumar V (2010) A study on the role of BaTiO3 in lithum bis (perfluoroethanesulfonyl) imide-based PVDF-HFP nanocomposites. Ionics 16(8):763–768CrossRef
29.
Zurück zum Zitat Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334–341CrossRef Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334–341CrossRef
30.
Zurück zum Zitat Ni’mah YL, Cheng MY, Cheng JH, Rick J, Hwang BJ (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381CrossRef Ni’mah YL, Cheng MY, Cheng JH, Rick J, Hwang BJ (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381CrossRef
31.
Zurück zum Zitat Kim KS, Park SJ (2012) Influence of N-doped TiO2 on lithium ion conductivity of porous polymeric electrolyte membrane containing LiClO4. Solid State Ionics 212:18–25CrossRef Kim KS, Park SJ (2012) Influence of N-doped TiO2 on lithium ion conductivity of porous polymeric electrolyte membrane containing LiClO4. Solid State Ionics 212:18–25CrossRef
32.
Zurück zum Zitat Polu AR, Rhee HW (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12-LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353CrossRef Polu AR, Rhee HW (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12-LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353CrossRef
33.
Zurück zum Zitat Xie H, Liao Y, Sun P, Chen T, Rao M, Li W (2014) Investigation on polyethylene-supported and nano-SiO2 doped poly (methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery. Electrochim Acta 127:327–333CrossRef Xie H, Liao Y, Sun P, Chen T, Rao M, Li W (2014) Investigation on polyethylene-supported and nano-SiO2 doped poly (methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery. Electrochim Acta 127:327–333CrossRef
34.
Zurück zum Zitat Reddeppa N, Sharma AK, Rao VVRN, Chen W (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41CrossRef Reddeppa N, Sharma AK, Rao VVRN, Chen W (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41CrossRef
35.
Zurück zum Zitat Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176CrossRef Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176CrossRef
36.
Zurück zum Zitat Klongkan S, Pumchusak J (2015) Effects of the addition of LiCF3SO3 salt on the conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Int J Chem Eng Appl 6(3):165 Klongkan S, Pumchusak J (2015) Effects of the addition of LiCF3SO3 salt on the conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Int J Chem Eng Appl 6(3):165
37.
Zurück zum Zitat Moreno M, Quijada R, Santa Ana MA, Benavente E, Gomez-Romero P, González G (2011) Electrical and mechanical properties of poly (ethylene oxide)/intercalated clay polymer electrolyte. Electrochim Acta 58:112–118CrossRef Moreno M, Quijada R, Santa Ana MA, Benavente E, Gomez-Romero P, González G (2011) Electrical and mechanical properties of poly (ethylene oxide)/intercalated clay polymer electrolyte. Electrochim Acta 58:112–118CrossRef
Metadaten
Titel
PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass
verfasst von
Peng Chen
Xiaoping Liang
Jun Wang
Di Zhang
Shanmin Yang
Weishan Wu
Wei Zhang
Xiaowei Fan
Dequan Zhang
Publikationsdatum
20.10.2016
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-4235-5

Weitere Artikel der Ausgabe 3/2017

Journal of Sol-Gel Science and Technology 3/2017 Zur Ausgabe

Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Facile route to synthesize mesoporous SBA-15 rods with different sizes for lysozyme immobilization

Original Paper: Devices based on sol-gel or hybrid materials

Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Impact of drying procedure on the morphology and structure of TiO2 xerogels and the performance of dye sensitized solar cells

Original Paper: Industrial and technological applications of sol-gel and hybrid materials

Removal of lead(II), copper(II), cobalt(II) and nickel(II) ions from aqueous solutions using carbon gels

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.