Skip to main content

21.03.2025 | Vision and Sensors

Perception Sensor Model Fidelity Evaluation for Automated Driving System Scenario-Based Simulation Testing

verfasst von: Bing Zhu, Tianxin Fan, Wenbo Zhao, Changrong Li, Peixing Zhang

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Scenario-based simulation testing has become a mainstream method for performance verification of automated driving systems. However, there is still no unified consensus on how to validate the effectiveness of simulation testing results. In particular, perception sensor models play a central role in mapping simulation scenarios to automated driving systems, and their fidelity evaluation has been receiving increasing attention. This paper proposes a perception sensor model fidelity evaluation method for scenario-based simulation testing of automated driving systems. First, the overall process of fidelity evaluation for perception sensor models in logical scenarios is presented, including the selection of scenarios, evaluation indicators, and the coupling of indicators. Subsequently, multi-layer fidelity evaluation metrics and computational methods are introduced, covering basic layer, sensorium layer, and object layer indices. Next, the analytic hierarchy process and probability distribution methods are used to determine the weights of different fidelity evaluation metrics. The proposed method is validated through LiDAR sensor models constructed using Ray-Tracing technology with different parameters in a front static logical scenario. The fidelity of the four sensor models in this type of scenario is 91.43%, 88.18%, 87.21%, and 81.35%, respectively. The proposed method can be used to verify the process of scenario-based simulation testing for automated driving systems, providing strong support for the validity of automated vehicles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Degen, R., et al. (2024). Development of a lidar model for the analysis of borderline cases including vehicle dynamics in a virtual city environment in real time. International Journal of Automotive Technology., 24(4), 955–968.MATH Degen, R., et al. (2024). Development of a lidar model for the analysis of borderline cases including vehicle dynamics in a virtual city environment in real time. International Journal of Automotive Technology., 24(4), 955–968.MATH
Zurück zum Zitat Dong, X., et al. (2024). Complexity of driving scenarios based on traffic accident data. International Journal of Automotive Technology., 25(1), 23–36.MATH Dong, X., et al. (2024). Complexity of driving scenarios based on traffic accident data. International Journal of Automotive Technology., 25(1), 23–36.MATH
Zurück zum Zitat Jung, J., et al. (2022). Automatic scenario generation for decision algorithm performance evaluation of autonomous vehicle via scenario parameter sweeping method. International Journal of Automotive Technology., 23(5), 1383–1391.MATH Jung, J., et al. (2022). Automatic scenario generation for decision algorithm performance evaluation of autonomous vehicle via scenario parameter sweeping method. International Journal of Automotive Technology., 23(5), 1383–1391.MATH
Zurück zum Zitat Kim, J., et al. (2024). AEB simulation method based on vehicle test data for accident analysis of ADAS Vehicles. International Journal of Automotive Technology., 25(2), 261–277.MATH Kim, J., et al. (2024). AEB simulation method based on vehicle test data for accident analysis of ADAS Vehicles. International Journal of Automotive Technology., 25(2), 261–277.MATH
Zurück zum Zitat Krajewski, R., et al. (2018). The highD Dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. In 21st International Conference on Intelligent Transportation Systems, Proceedings (ITSC) (pp. 2118–2125). IEEE. https://ieeexplore.ieee.org/document/8569552. Krajewski, R., et al. (2018). The highD Dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. In 21st International Conference on Intelligent Transportation Systems, Proceedings (ITSC) (pp. 2118–2125). IEEE. https://​ieeexplore.​ieee.​org/​document/​8569552.
Zurück zum Zitat Li, X., et al. (2023). A received signal quality evaluation model for spad-based lidar receivers and its verification. IEEE Photonic Tech. L., 35(12), 668–371.MATH Li, X., et al. (2023). A received signal quality evaluation model for spad-based lidar receivers and its verification. IEEE Photonic Tech. L., 35(12), 668–371.MATH
Zurück zum Zitat Li, H., et al. (2024). Multi-level and metrics evaluation approach for data-driven based sensor models. Automot. Innov., 7, 248–257.MATH Li, H., et al. (2024). Multi-level and metrics evaluation approach for data-driven based sensor models. Automot. Innov., 7, 248–257.MATH
Zurück zum Zitat Piazzoni, A., et al. (2024). PEM: perception error model for virtual testing of autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 25(1), 670–681.MATH Piazzoni, A., et al. (2024). PEM: perception error model for virtual testing of autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 25(1), 670–681.MATH
Zurück zum Zitat Rainio, O., et al. (2024). Evaluation metrics and statistical tests for machine learning. Science Reports., 14(1), 15724.MATH Rainio, O., et al. (2024). Evaluation metrics and statistical tests for machine learning. Science Reports., 14(1), 15724.MATH
Zurück zum Zitat Rott, R. (2022). Dynamic update of stand-alone lidar model based on ray tracing using the nvidia optix engine. International Conference on Connected Vehicle and Expo (ICCVE)., 2022, 1–6.MATH Rott, R. (2022). Dynamic update of stand-alone lidar model based on ray tracing using the nvidia optix engine. International Conference on Connected Vehicle and Expo (ICCVE)., 2022, 1–6.MATH
Zurück zum Zitat Wang, W., et al. (2024). An improved grey relational theory evaluation method: considering the comprehensive performance of autonomous vehicles in virtual test. International Journal of Automotive Technology., 25(5), 1235–1249.MATH Wang, W., et al. (2024). An improved grey relational theory evaluation method: considering the comprehensive performance of autonomous vehicles in virtual test. International Journal of Automotive Technology., 25(5), 1235–1249.MATH
Zurück zum Zitat Xia, Q., et al. (2018). Test scenario design for intelligent driving system ensuring coverage and effectiveness. International Journal of Automotive Technology., 19(4), 751–758.MATH Xia, Q., et al. (2018). Test scenario design for intelligent driving system ensuring coverage and effectiveness. International Journal of Automotive Technology., 19(4), 751–758.MATH
Zurück zum Zitat Yang, W., et al. (2024). The research of 3D point cloud data clustering based on MEMS lidar for autonomous driving. International Journal of Automotive Technology, 25(5), 1251–1262.MATH Yang, W., et al. (2024). The research of 3D point cloud data clustering based on MEMS lidar for autonomous driving. International Journal of Automotive Technology, 25(5), 1251–1262.MATH
Metadaten
Titel
Perception Sensor Model Fidelity Evaluation for Automated Driving System Scenario-Based Simulation Testing
verfasst von
Bing Zhu
Tianxin Fan
Wenbo Zhao
Changrong Li
Peixing Zhang
Publikationsdatum
21.03.2025
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-025-00235-7