Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

06.03.2021

Performance Analysis of a Full-Duplex TWDM-PON Using OFDM Modulation with Red LED Visible Light Communication System

verfasst von: Meet Kumari, Anu Sheetal, Reecha Sharma

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Today’s access networks are in high demand to fulfill the high bandwidth requirement because of extensive improvement in high transmission rate applications for cloud computing, big data analytics, and other next-generation 5G smart applications. In this work, the symmetrical and bidirectional time and wavelength division multiplexing-passive optical network (TWDM-PON) system is proposed and demonstrated. Orthogonal frequency division multiplexing (OFDM) with 4-level quadrature amplitude modulation is used for downstream and upstream transmission. Also, 625 nm red light-emitting diode is utilized for visible light communication (VLC) using a wireless link to encourage the economic high transmission rate fiber/VLC optical network. The TWDM-PON employing OFDM with the VLC system has been analysed for downstream and upstream channels for variable fiber-wireless link range. Additionally, the impact of a high transmission rate and usage of digital signal processing (DSP) unit to reduce losses due to fiber nonlinearity effects in the proposed link has been investigated. The results show that the maximum faithful wireless and wired range for the proposed system is 140 m and 60 km respectively at 20 Gbps to attain the minimum 3.8 × 10−3 BER. The decrease in error vector magnitude (EVM%) by almost 52% with the use of DSP in the proposed system provides a high transmission rate of 200 Gbps in the proposed link. Further, comparative performance of the proposed system with previous latest works in literature reveals a superior performance of the proposed link. The proposed TWDM-PON system provides a next-generation access network from rural areas to urban areas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Han, J., Zhang, J., Zhao, Y., & Gu, W. (2013). Channel capacity and space-time block coding for coherent optical MIMO multi-mode fiber links. Optik, 124(10), 922–927.CrossRef Han, J., Zhang, J., Zhao, Y., & Gu, W. (2013). Channel capacity and space-time block coding for coherent optical MIMO multi-mode fiber links. Optik, 124(10), 922–927.CrossRef
2.
Zurück zum Zitat Ren, F., Li, J., Hu, T., Tang, R., Yu, J., Mo, Q., He, Y., Chen, Z., & Li, Z. (2015). Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX. IEEE Photonics Journal, 7(5), 1–9.CrossRef Ren, F., Li, J., Hu, T., Tang, R., Yu, J., Mo, Q., He, Y., Chen, Z., & Li, Z. (2015). Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX. IEEE Photonics Journal, 7(5), 1–9.CrossRef
3.
Zurück zum Zitat Odeyemi, K. O., & Owolawi, P. A. (2020). Wireless energy harvesting based asymmetric RF/FSO system with transmit antenna selection and receive diversity over M-distribution channel and non-zero boresight pointing error. Optics Communications, 461, 125219.CrossRef Odeyemi, K. O., & Owolawi, P. A. (2020). Wireless energy harvesting based asymmetric RF/FSO system with transmit antenna selection and receive diversity over M-distribution channel and non-zero boresight pointing error. Optics Communications, 461, 125219.CrossRef
4.
Zurück zum Zitat Hu, T., Li, J., Ren, F., Tang, R., Yu, J., Mo, Q., Ke, Y., Du, C., Liu, Z., He, Y., et al. (2016). Demonstration of bidirectional PON based on mode division multiplexing. IEEE Photonics Technology Letters, 28(11), 1201–1204.CrossRef Hu, T., Li, J., Ren, F., Tang, R., Yu, J., Mo, Q., Ke, Y., Du, C., Liu, Z., He, Y., et al. (2016). Demonstration of bidirectional PON based on mode division multiplexing. IEEE Photonics Technology Letters, 28(11), 1201–1204.CrossRef
5.
Zurück zum Zitat Valcarenghi, L., Van, D. P., Raponi, P. G., Castoldi, P., Campelo, D. R., Wong, S. W., Yen, S. H., Kazovsky, L. G., & Yamashita, S. (2012). Energy efficiency in passive optical networks: Where, when, and how? IEEE Network, 26(6), 61–68.CrossRef Valcarenghi, L., Van, D. P., Raponi, P. G., Castoldi, P., Campelo, D. R., Wong, S. W., Yen, S. H., Kazovsky, L. G., & Yamashita, S. (2012). Energy efficiency in passive optical networks: Where, when, and how? IEEE Network, 26(6), 61–68.CrossRef
7.
Zurück zum Zitat Yeh, C. H., Chow, C. W., Chen, H. Y., & Liu, Y. L. (2014). 115 Gbit/s downstream and 10 Gbit/s upstream TWDM-PON together with 11.25 Gbit/s wireless signal utilizing OFDM-QAM modulation. Optical Fiber Technology, 20(2), 84–89.CrossRef Yeh, C. H., Chow, C. W., Chen, H. Y., & Liu, Y. L. (2014). 115 Gbit/s downstream and 10 Gbit/s upstream TWDM-PON together with 11.25 Gbit/s wireless signal utilizing OFDM-QAM modulation. Optical Fiber Technology, 20(2), 84–89.CrossRef
8.
Zurück zum Zitat Lin, B., Li, Y., Zhang, S., & Tang, X. (2015). Asymmetrical TWDM-PON with 4 × 25-Gb/s downstream DSB OFDM and 4 × 10-Gb/s upstream OOK modulations. Optical Fiber Technology, 26, 206–210.CrossRef Lin, B., Li, Y., Zhang, S., & Tang, X. (2015). Asymmetrical TWDM-PON with 4 × 25-Gb/s downstream DSB OFDM and 4 × 10-Gb/s upstream OOK modulations. Optical Fiber Technology, 26, 206–210.CrossRef
9.
Zurück zum Zitat Šprem, M., & Babić, D. (2019). Wavelength reuse WDM-PON using RSOA and modulation averaging. Optics Communications, 451, 1–5.CrossRef Šprem, M., & Babić, D. (2019). Wavelength reuse WDM-PON using RSOA and modulation averaging. Optics Communications, 451, 1–5.CrossRef
10.
Zurück zum Zitat Tang, X., Zhou, J., Guo, M., Qi, J., Hu, F., Qiao, Y., & Lu, Y. (2018). 40-Gb/s PAM4 with low-complexity equalizers for next-generation PON systems. Optical Fiber Technology, 40, 108–113.CrossRef Tang, X., Zhou, J., Guo, M., Qi, J., Hu, F., Qiao, Y., & Lu, Y. (2018). 40-Gb/s PAM4 with low-complexity equalizers for next-generation PON systems. Optical Fiber Technology, 40, 108–113.CrossRef
11.
Zurück zum Zitat Zhang, W. F., Xin, X. J., Zhang, Q., Zhang, Z. X., Nai, W., & Shi, Y. (2010). Centralized light-wave WDM-PON employing DQPSK downstream and OOK remodulated upstream signals. Journal of China Universities of Posts and Telecommunications, 17(4), 125–128.CrossRef Zhang, W. F., Xin, X. J., Zhang, Q., Zhang, Z. X., Nai, W., & Shi, Y. (2010). Centralized light-wave WDM-PON employing DQPSK downstream and OOK remodulated upstream signals. Journal of China Universities of Posts and Telecommunications, 17(4), 125–128.CrossRef
12.
Zurück zum Zitat Shao, Y., Chen, F., Wang, A., Luo, Y., & Chen, L. (2017). Application research on 4-pulsed amplitude modulation in 10 Gb/s passive optical access systems. Optik, 146, 63–68.CrossRef Shao, Y., Chen, F., Wang, A., Luo, Y., & Chen, L. (2017). Application research on 4-pulsed amplitude modulation in 10 Gb/s passive optical access systems. Optik, 146, 63–68.CrossRef
13.
Zurück zum Zitat Gill, H. K., Walia, G. K., & Grewal, N. S. (2019). Performance analysis of mode division multiplexing IS-OWC system using Manchester, DPSK and DQPSK modulation techniques. Optik, 177, 93–101.CrossRef Gill, H. K., Walia, G. K., & Grewal, N. S. (2019). Performance analysis of mode division multiplexing IS-OWC system using Manchester, DPSK and DQPSK modulation techniques. Optik, 177, 93–101.CrossRef
14.
Zurück zum Zitat Selvendran, S., Sivanantha Raja, A., Esakki Muthu, K., & Lakshmi, A. (2019). Certain investigation on visible light communication with OFDM modulated white LED using optisystem simulation. Wireless Personal Communications, 109, 1377–1394.CrossRef Selvendran, S., Sivanantha Raja, A., Esakki Muthu, K., & Lakshmi, A. (2019). Certain investigation on visible light communication with OFDM modulated white LED using optisystem simulation. Wireless Personal Communications, 109, 1377–1394.CrossRef
15.
Zurück zum Zitat Kaur, A., Kaur, B., & Singh, K. (2017). Design and performance analysis of bidirectional TWDM-PON employing QAM-OFDM for downstream and re-modulation for upstream. Optik, 134, 287–294.CrossRef Kaur, A., Kaur, B., & Singh, K. (2017). Design and performance analysis of bidirectional TWDM-PON employing QAM-OFDM for downstream and re-modulation for upstream. Optik, 134, 287–294.CrossRef
16.
Zurück zum Zitat Lyu, W. C., Wang, A., Xie, D., Zhu, L., Guan, X., Wang, J., & Xu, J. (2018). Self-homodyne optical OFDM for broadband WDM-PONs with crosstalk-free remodulation and enhanced tolerance to Rayleigh noise. Optics Communications, 414, 77–82.CrossRef Lyu, W. C., Wang, A., Xie, D., Zhu, L., Guan, X., Wang, J., & Xu, J. (2018). Self-homodyne optical OFDM for broadband WDM-PONs with crosstalk-free remodulation and enhanced tolerance to Rayleigh noise. Optics Communications, 414, 77–82.CrossRef
17.
Zurück zum Zitat Grover, A., & Sheetal, A. (2020). A cost-effective high-capacity OFDM based RoFSO transmission link incorporating hybrid SS-WDM-MDM of Hermite Gaussian modes. Optoelectronics and Advanced Materials—Rapid Communications, 14(3–4), 136–145. Grover, A., & Sheetal, A. (2020). A cost-effective high-capacity OFDM based RoFSO transmission link incorporating hybrid SS-WDM-MDM of Hermite Gaussian modes. Optoelectronics and Advanced Materials—Rapid Communications, 14(3–4), 136–145.
18.
Zurück zum Zitat Grover, A., Sheetal, A., & Dhasarathan, V. (2020). Performance analysis of mode division multiplexing based free space optics system incorporating on–off keying and polarization shift keying under dynamic environmental conditions. Wireless Networks, 26, 3439–3449.CrossRef Grover, A., Sheetal, A., & Dhasarathan, V. (2020). Performance analysis of mode division multiplexing based free space optics system incorporating on–off keying and polarization shift keying under dynamic environmental conditions. Wireless Networks, 26, 3439–3449.CrossRef
19.
Zurück zum Zitat Zhang, J., Li, F., Li, J., & Li, Z. (2017). 95.16-Gb/s mode-division-multiplexing signal transmission in free-space enabled by effective-conversion of vector beams. IEEE Photonics Journal, 9(4), 1–9. Zhang, J., Li, F., Li, J., & Li, Z. (2017). 95.16-Gb/s mode-division-multiplexing signal transmission in free-space enabled by effective-conversion of vector beams. IEEE Photonics Journal, 9(4), 1–9.
20.
Zurück zum Zitat Kachhatiya, V., & Prince, S. (2016). Four-fold increase in users of time-wavelength division multiplexing (TWDM) passive optical network (PON) by delayed optical amplitude modulation (AM) upstream. Optical Fiber Technology, 32, 71–81.CrossRef Kachhatiya, V., & Prince, S. (2016). Four-fold increase in users of time-wavelength division multiplexing (TWDM) passive optical network (PON) by delayed optical amplitude modulation (AM) upstream. Optical Fiber Technology, 32, 71–81.CrossRef
21.
Zurück zum Zitat Kachhatiya, V., & Prince, S. (2018). Downstream performance analysis and optimization of the next generation passive optical network stage 2 (NG-PON2). Optics and Laser Technology, 104, 90–102.CrossRef Kachhatiya, V., & Prince, S. (2018). Downstream performance analysis and optimization of the next generation passive optical network stage 2 (NG-PON2). Optics and Laser Technology, 104, 90–102.CrossRef
22.
Zurück zum Zitat Savojbolaghchi, H., Sadough, S. M. S., Dabiri, M. T., & Ansari, I. S. (2019). Generalized channel estimation and data detection for MIMO multiplexing FSO parallel channels over limited space. Optics Communications, 452, 158–168.CrossRef Savojbolaghchi, H., Sadough, S. M. S., Dabiri, M. T., & Ansari, I. S. (2019). Generalized channel estimation and data detection for MIMO multiplexing FSO parallel channels over limited space. Optics Communications, 452, 158–168.CrossRef
23.
Zurück zum Zitat Anis, M. I., Qureshi, M. S., & Zafar, S. (2017). Demonstration of TWDM-PON backward compatibility with conventional GPON. Wireless Personal Communications, 95, 581–592.CrossRef Anis, M. I., Qureshi, M. S., & Zafar, S. (2017). Demonstration of TWDM-PON backward compatibility with conventional GPON. Wireless Personal Communications, 95, 581–592.CrossRef
24.
Zurück zum Zitat Yeh, C. H., Chow, C. W., Gu, C. S., Guo, B. S., Cheng, Y. J., & Chen, J. H. (2018). Performance analysis of free space optical communication traffic integrated with passive optical network. Electronics Letters, 54(21), 1228–1229.CrossRef Yeh, C. H., Chow, C. W., Gu, C. S., Guo, B. S., Cheng, Y. J., & Chen, J. H. (2018). Performance analysis of free space optical communication traffic integrated with passive optical network. Electronics Letters, 54(21), 1228–1229.CrossRef
25.
Zurück zum Zitat Singh, M., Malhotra, J., Mani Rajan, M. S., Dhasarathan, V., & Aly, M. H. (2020). Performance evaluation of 6.4 Tbps dual polarization quadrature phase shift keying Nyquist-WDM superchannel FSO transmission link: Impact of different weather conditions. Alexandria Engineering Journal, 59(2), 977–986.CrossRef Singh, M., Malhotra, J., Mani Rajan, M. S., Dhasarathan, V., & Aly, M. H. (2020). Performance evaluation of 6.4 Tbps dual polarization quadrature phase shift keying Nyquist-WDM superchannel FSO transmission link: Impact of different weather conditions. Alexandria Engineering Journal, 59(2), 977–986.CrossRef
26.
Zurück zum Zitat Moghaddasi, M., Mamdoohi, G., Muhammad Noor, A. S., Mahdi, M. A., & Ahmad Anas, S. B. (2015). Development of SAC-OCDMA in FSO with multi-wavelength laser source. Optics Communications, 356, 282–289.CrossRef Moghaddasi, M., Mamdoohi, G., Muhammad Noor, A. S., Mahdi, M. A., & Ahmad Anas, S. B. (2015). Development of SAC-OCDMA in FSO with multi-wavelength laser source. Optics Communications, 356, 282–289.CrossRef
27.
Zurück zum Zitat Mallick, K., Mandal, P., Mukherjee, R., Mandal, G. C., Das, B., & Patra, A. S. (2020). Generation of 40 GHz/80 GHz OFDM based MMW source and the OFDM-FSO transport system based on special fine tracking technology. Optical Fiber Technology, 54, 102130.CrossRef Mallick, K., Mandal, P., Mukherjee, R., Mandal, G. C., Das, B., & Patra, A. S. (2020). Generation of 40 GHz/80 GHz OFDM based MMW source and the OFDM-FSO transport system based on special fine tracking technology. Optical Fiber Technology, 54, 102130.CrossRef
28.
Zurück zum Zitat Prabu, K., Charanya, S., Jain, M., & Guha, D. (2017). BER analysis of SS-WDM based FSO system for Vellore weather conditions. Optics Communications, 403, 73–80.CrossRef Prabu, K., Charanya, S., Jain, M., & Guha, D. (2017). BER analysis of SS-WDM based FSO system for Vellore weather conditions. Optics Communications, 403, 73–80.CrossRef
29.
Zurück zum Zitat Mohd Nor, N. A., Ghassemlooy, Z., Zvanovec, S., Khalighi, M. A., Bhatnagar, M. R., Bohata, J., & Komanec, M. (2019). Experimental analysis of a triple-hop relay-assisted FSO system with turbulence. Optical Switching and Networking, 33, 194–198.CrossRef Mohd Nor, N. A., Ghassemlooy, Z., Zvanovec, S., Khalighi, M. A., Bhatnagar, M. R., Bohata, J., & Komanec, M. (2019). Experimental analysis of a triple-hop relay-assisted FSO system with turbulence. Optical Switching and Networking, 33, 194–198.CrossRef
30.
Zurück zum Zitat Chen, M., Lu, H., Chen, D., Jin, J., & Wang, J. (2020). An efficient MIMO–OFDM VLC system of combining space time block coding with orthogonal circulant matrix transform precoding. Optics Communications, 473, 125993.CrossRef Chen, M., Lu, H., Chen, D., Jin, J., & Wang, J. (2020). An efficient MIMO–OFDM VLC system of combining space time block coding with orthogonal circulant matrix transform precoding. Optics Communications, 473, 125993.CrossRef
31.
Zurück zum Zitat Li, H., Zhang, Y., Chen, X., Wu, C., Guo, J., Gao, Z., Pei, W., & Chen, H. (2015). 682 Mbit/s phosphorescent white LED visible light communications utilizing analog equalized 16QAM-OFDM modulation without blue filter. Optics Communications, 354, 107–111.CrossRef Li, H., Zhang, Y., Chen, X., Wu, C., Guo, J., Gao, Z., Pei, W., & Chen, H. (2015). 682 Mbit/s phosphorescent white LED visible light communications utilizing analog equalized 16QAM-OFDM modulation without blue filter. Optics Communications, 354, 107–111.CrossRef
32.
Zurück zum Zitat Ma, J., He, J., Chen, Q., Shi, J., Zhou, Z., Cheng, Y., & Xiao, Y. (2018). A MB-CAZAC precoding combined with 128/64/32/16-QAM modulation for OFDM-VLC system. Optics Communications, 424, 154–158.CrossRef Ma, J., He, J., Chen, Q., Shi, J., Zhou, Z., Cheng, Y., & Xiao, Y. (2018). A MB-CAZAC precoding combined with 128/64/32/16-QAM modulation for OFDM-VLC system. Optics Communications, 424, 154–158.CrossRef
33.
Zurück zum Zitat Lu, M., Xiao, S., Zhang, L., Zheng, L., Fang, J., Huang, T., & Hu, W. (2019). Real-time VLC system integrated with positioning beacon transmission based on 2ASK-CE-OFDM coding. Optics Communications, 452, 252–257.CrossRef Lu, M., Xiao, S., Zhang, L., Zheng, L., Fang, J., Huang, T., & Hu, W. (2019). Real-time VLC system integrated with positioning beacon transmission based on 2ASK-CE-OFDM coding. Optics Communications, 452, 252–257.CrossRef
34.
Zurück zum Zitat Deng, R., He, J., Chen, M., & Zhou, Y. (2018). Experimental demonstration of a real-time gigabit OFDM-VLC system with a cost-efficient precoding scheme. Optics Communications, 423, 69–73.CrossRef Deng, R., He, J., Chen, M., & Zhou, Y. (2018). Experimental demonstration of a real-time gigabit OFDM-VLC system with a cost-efficient precoding scheme. Optics Communications, 423, 69–73.CrossRef
35.
Zurück zum Zitat Chow, C. W., Yeh, C. H., Liu, Y. F., Huang, P. Y., & Liu, Y. (2013). Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM. Optics Communications, 292, 49–52.CrossRef Chow, C. W., Yeh, C. H., Liu, Y. F., Huang, P. Y., & Liu, Y. (2013). Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM. Optics Communications, 292, 49–52.CrossRef
36.
Zurück zum Zitat Zhang, J., Hong, X., Liu, J., & Guo, C. (2018). Experimental demonstration of an OFDM based visible light communication system using inter-block precoding and superimposed pilots. Optics Communications, 412, 219–225.CrossRef Zhang, J., Hong, X., Liu, J., & Guo, C. (2018). Experimental demonstration of an OFDM based visible light communication system using inter-block precoding and superimposed pilots. Optics Communications, 412, 219–225.CrossRef
37.
Zurück zum Zitat Li, X., Min, C., Gao, S., Wang, Y., Chen, X., & Chen, H. (2019). Experimental demonstration of a real-time multi-channel uplink VLC system. Optics Communications, 453, 124420.CrossRef Li, X., Min, C., Gao, S., Wang, Y., Chen, X., & Chen, H. (2019). Experimental demonstration of a real-time multi-channel uplink VLC system. Optics Communications, 453, 124420.CrossRef
38.
Zurück zum Zitat Chi, N., & Shi, J. (2015). Investigation on overlapping interference on VLC networks consisting of multiple LEDs. ICT Express, 1, 63–66.CrossRef Chi, N., & Shi, J. (2015). Investigation on overlapping interference on VLC networks consisting of multiple LEDs. ICT Express, 1, 63–66.CrossRef
39.
Zurück zum Zitat He, J., Dong, H., Deng, R., Shi, J., & Chen, L. (2016). WDM-CAP-PON integration with VLLC system based on optical frequency comb. Optics Communications, 374, 127–132.CrossRef He, J., Dong, H., Deng, R., Shi, J., & Chen, L. (2016). WDM-CAP-PON integration with VLLC system based on optical frequency comb. Optics Communications, 374, 127–132.CrossRef
40.
Zurück zum Zitat Wei, Y., He, J., Deng, R., Shi, J., Chen, S., & Chen, L. (2017). An approach enabling adaptive FEC for OFDM in fiber-VLLC system. Optics Communications, 405, 329–333.CrossRef Wei, Y., He, J., Deng, R., Shi, J., Chen, S., & Chen, L. (2017). An approach enabling adaptive FEC for OFDM in fiber-VLLC system. Optics Communications, 405, 329–333.CrossRef
41.
Zurück zum Zitat Shi, J., He, J., Zhang, R., Deng, R., & Xiao, Y. (2018). OFDM/OQAM based WDM fiber VLLC system employing improved channel estimation method. Optics Communications, 427, 578–583.CrossRef Shi, J., He, J., Zhang, R., Deng, R., & Xiao, Y. (2018). OFDM/OQAM based WDM fiber VLLC system employing improved channel estimation method. Optics Communications, 427, 578–583.CrossRef
42.
Zurück zum Zitat Chen, C., Zhong, W. D., & Wu, D. (2016). Integration of variable-rate OWC with OFDM-PON for hybrid optical access based on adaptive envelope modulation. Optics Communications, 381, 10–17.CrossRef Chen, C., Zhong, W. D., & Wu, D. (2016). Integration of variable-rate OWC with OFDM-PON for hybrid optical access based on adaptive envelope modulation. Optics Communications, 381, 10–17.CrossRef
43.
Zurück zum Zitat Lu, I. C., Yeh, C. H., Hsu, D. Z., & Chow, C. W. (2016). Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication. IEEE Photonics Journal, 8(3), 1–6.CrossRef Lu, I. C., Yeh, C. H., Hsu, D. Z., & Chow, C. W. (2016). Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication. IEEE Photonics Journal, 8(3), 1–6.CrossRef
44.
Zurück zum Zitat Matheus, L., Pires, L., Vieira, A., Vieira, L. F. M., Vieira, M. A. M., & Nacif, J. A. (2019). The internet of light: Impact of colors in LED-to-LED visible light communication systems. Internet Technology Letters, 2(1), 1–6.CrossRef Matheus, L., Pires, L., Vieira, A., Vieira, L. F. M., Vieira, M. A. M., & Nacif, J. A. (2019). The internet of light: Impact of colors in LED-to-LED visible light communication systems. Internet Technology Letters, 2(1), 1–6.CrossRef
45.
Zurück zum Zitat Kaur, A., Sheetal, A., & Miglani, R. (2017). Impact of optical modulation formats on 10 G/2.5 G asymmetric XG-PON system. Optik, 149, 351–358.CrossRef Kaur, A., Sheetal, A., & Miglani, R. (2017). Impact of optical modulation formats on 10 G/2.5 G asymmetric XG-PON system. Optik, 149, 351–358.CrossRef
46.
Zurück zum Zitat Yang, H., Li, J., Lin, B., Wan, Y., Guo, Y., Zhu, L., Li, L., He, Y., & Chen, Z. (2013). DSP-based evolution from conventional TDM-PON to TDM-OFDM-PON. Journal of Lightwave Technology, 31(16), 3035–3041.CrossRef Yang, H., Li, J., Lin, B., Wan, Y., Guo, Y., Zhu, L., Li, L., He, Y., & Chen, Z. (2013). DSP-based evolution from conventional TDM-PON to TDM-OFDM-PON. Journal of Lightwave Technology, 31(16), 3035–3041.CrossRef
47.
Zurück zum Zitat Li, C., Hu, R., Li, H. B., Luo, M., Yang, Q., & Yu, S. (2017). Digital OFDM-PON based on delta-sigma modulation employing binary IM-DD channels. IEEE Photonics Journal, 9(2), 1–7.CrossRef Li, C., Hu, R., Li, H. B., Luo, M., Yang, Q., & Yu, S. (2017). Digital OFDM-PON based on delta-sigma modulation employing binary IM-DD channels. IEEE Photonics Journal, 9(2), 1–7.CrossRef
48.
Zurück zum Zitat Kaur, A., Singh, M. L., & Sheetal, A. (2014). Simulative analysis of co-existing 2.5 G/10 G asymmetric XG-PON system using RZ and NRZ data formats. Optik, 125(14), 3637–3640.CrossRef Kaur, A., Singh, M. L., & Sheetal, A. (2014). Simulative analysis of co-existing 2.5 G/10 G asymmetric XG-PON system using RZ and NRZ data formats. Optik, 125(14), 3637–3640.CrossRef
49.
Zurück zum Zitat Kumari, M., Sharma, R., & Sheetal, A. (2019). Comparative analysis of high speed 20/20 Gbps for long-reach NG-PON2. Journal of Optical Communications, 66, 1–14. Kumari, M., Sharma, R., & Sheetal, A. (2019). Comparative analysis of high speed 20/20 Gbps for long-reach NG-PON2. Journal of Optical Communications, 66, 1–14.
50.
Zurück zum Zitat Sheetal, A., & Singh, H. (2018). 5 × 10 Gbps WDM-CAP-PON based on frequency comb using OFDM with blue LD. Optical and Quantum Electronics, 50, 1–14.CrossRef Sheetal, A., & Singh, H. (2018). 5 × 10 Gbps WDM-CAP-PON based on frequency comb using OFDM with blue LD. Optical and Quantum Electronics, 50, 1–14.CrossRef
51.
Zurück zum Zitat Nguyen, D.-N., Bohata, J., Spacil, J., Dousek, D., Komanec, M., Zvanovec, S., Ghassemlooy, Z., & Ortega, B. (2019). M-QAM transmission over hybrid microwave photonic links at the K-band. Optics Express, 27(23), 33745.CrossRef Nguyen, D.-N., Bohata, J., Spacil, J., Dousek, D., Komanec, M., Zvanovec, S., Ghassemlooy, Z., & Ortega, B. (2019). M-QAM transmission over hybrid microwave photonic links at the K-band. Optics Express, 27(23), 33745.CrossRef
52.
Zurück zum Zitat Mallick, K., Mukherjee, R., Das, B., Mandal, G. C., & Patra, A. S. (2018). Bidirectional hybrid OFDM based Wireless-over-fiber transport system using reflective semiconductor amplifier and polarization multiplexing technique. AEU—International Journal of Electronics and Communications, 96, 260–266. Mallick, K., Mukherjee, R., Das, B., Mandal, G. C., & Patra, A. S. (2018). Bidirectional hybrid OFDM based Wireless-over-fiber transport system using reflective semiconductor amplifier and polarization multiplexing technique. AEU—International Journal of Electronics and Communications, 96, 260–266.
Metadaten
Titel
Performance Analysis of a Full-Duplex TWDM-PON Using OFDM Modulation with Red LED Visible Light Communication System
verfasst von
Meet Kumari
Anu Sheetal
Reecha Sharma
Publikationsdatum
06.03.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08343-0

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

Neuer Inhalt