Skip to main content
Erschienen in: Wireless Personal Communications 4/2022

16.07.2022

Performance Analysis of a Prediction-Sensing Based Cooperative Energy Harvesting CRN Over Rician Fading Channels

verfasst von: Banani Talukdar, Deepak Kumar, Wasim Arif

Erschienen in: Wireless Personal Communications | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we investigate a prediction-sensing based cooperative energy harvesting cognitive radio network (EH-CRN) over a Rician fading environment. Incorporating a prediction based sensing mechanism provides enhanced protection to the quality-of-service (QoS) of the primary user (PU) subsequently leading to an improved spectrum efficiency. The complex channel model in analysing the performance of the prediction-sensing based EH-CRN is taken to be as Rician considering the envisioned higher frequency communication systems. An optimal sensing time is also evaluated whereat the secondary network throughput is the maximum. The system behaviour is analysed in terms of two standard performance indices viz., outage probability (OP) and the symbol error rate (SER). The exact analytical expression for both the OP and SER in a Rician fading channel environment is obtained. The impact of Rician fading factor, signal-to-noise ratio (SNR), number of cooperative cognitive radio nodes, data rate parameter and prediction error on the detection probability, harvested energy, normalized throughput, OP and SER is analysed and discussed. The SER for different digital modulation techniques are also obtained. Monte Carlo simulations verify the correctness of the analytical modelling of the system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Federal Communications Commission.(2002). Spectrum policy task force report, FCC 02–155. Federal Communications Commission.(2002). Spectrum policy task force report, FCC 02–155.
2.
Zurück zum Zitat Haykin, S.(2005). Cognitive radio: brain-empowered wireless communications. IEEE Journal on selected areas in communications, 23(2), 201–220. Haykin, S.(2005). Cognitive radio: brain-empowered wireless communications. IEEE Journal on selected areas in communications, 23(2), 201–220.
3.
Zurück zum Zitat Mitola, J.I. (2002). Cognitive radio. An integrated agent architecture for software defined radio. Mitola, J.I. (2002). Cognitive radio. An integrated agent architecture for software defined radio.
4.
Zurück zum Zitat Liang, Y. C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef Liang, Y. C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef
5.
Zurück zum Zitat Yang, J., & Zhao, H. (2015). Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Communications Letters, 19(10), 1738–1741.CrossRef Yang, J., & Zhao, H. (2015). Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Communications Letters, 19(10), 1738–1741.CrossRef
6.
Zurück zum Zitat Han, C., Harrold, T., Armour, S., Krikidis, I., Videv, S., Grant, P. M., Haas, H., Thompson, J. S., Ku, I., Wang, C. X., & Le, T. A. (2011). Green radio: Radio techniques to enable energy-efficient wireless networks. IEEE communications magazine, 49(6), 46–54.CrossRef Han, C., Harrold, T., Armour, S., Krikidis, I., Videv, S., Grant, P. M., Haas, H., Thompson, J. S., Ku, I., Wang, C. X., & Le, T. A. (2011). Green radio: Radio techniques to enable energy-efficient wireless networks. IEEE communications magazine, 49(6), 46–54.CrossRef
7.
Zurück zum Zitat Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive computing, 4(1), 18–27.CrossRef Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive computing, 4(1), 18–27.CrossRef
8.
Zurück zum Zitat Sudevalayam, S., & Kulkarni, P. (2010). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials, 13(3), 443–461.CrossRef Sudevalayam, S., & Kulkarni, P. (2010). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials, 13(3), 443–461.CrossRef
9.
Zurück zum Zitat El Shafie, A., Ashour, M., Khattab, T., & Mohamed, A. (2015). On spectrum sharing between energy harvesting cognitive radio users and primary users. International conference on computing, networking and communications (ICNC), pp. 214–220. El Shafie, A., Ashour, M., Khattab, T., & Mohamed, A. (2015). On spectrum sharing between energy harvesting cognitive radio users and primary users. International conference on computing, networking and communications (ICNC), pp. 214–220.
10.
Zurück zum Zitat El Shafie, A., & Khattab, T. (2014). Maximum throughput of a cooperative energy harvesting cognitive radio user. IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 1067–1072. El Shafie, A., & Khattab, T. (2014). Maximum throughput of a cooperative energy harvesting cognitive radio user. IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 1067–1072.
11.
Zurück zum Zitat Yang, J., & Ulukus, S. (2011). Optimal packet scheduling in an energy harvesting communication system. IEEE Transactions on Communications, 60(1), 220–230.CrossRef Yang, J., & Ulukus, S. (2011). Optimal packet scheduling in an energy harvesting communication system. IEEE Transactions on Communications, 60(1), 220–230.CrossRef
12.
Zurück zum Zitat Tutuncuoglu, K., & Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes. IEEE Transactions on Wireless Communications, 11(3), 1180–1189.CrossRef Tutuncuoglu, K., & Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes. IEEE Transactions on Wireless Communications, 11(3), 1180–1189.CrossRef
13.
Zurück zum Zitat Park, S., & Hong, D. (2014). Achievable throughput of energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 13(2), 1010–1022.CrossRef Park, S., & Hong, D. (2014). Achievable throughput of energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 13(2), 1010–1022.CrossRef
14.
Zurück zum Zitat Park, S., & Hong, D. (2013). Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 12(12), 6166–6179.CrossRef Park, S., & Hong, D. (2013). Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 12(12), 6166–6179.CrossRef
15.
Zurück zum Zitat Mao, S., Cheung, M.H., & Wong, V.W. (2012). An optimal energy allocation algorithm for energy harvesting wireless sensor networks. IEEE International Conference on Communications (ICC), pp. 265–270. Mao, S., Cheung, M.H., & Wong, V.W. (2012). An optimal energy allocation algorithm for energy harvesting wireless sensor networks. IEEE International Conference on Communications (ICC), pp. 265–270.
16.
Zurück zum Zitat Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE transactions on Wireless Communications, 12(9), 4788–4799.CrossRef Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE transactions on Wireless Communications, 12(9), 4788–4799.CrossRef
17.
Zurück zum Zitat Bhowmick, A., Roy, S. D., & Kundu, S. (2016). Throughput of a Cognitive radio network with energy-harvesting based on primary user signal. IEEE Wireless Communications Letters, 5(2), 136–139.CrossRef Bhowmick, A., Roy, S. D., & Kundu, S. (2016). Throughput of a Cognitive radio network with energy-harvesting based on primary user signal. IEEE Wireless Communications Letters, 5(2), 136–139.CrossRef
18.
Zurück zum Zitat Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef
19.
Zurück zum Zitat Das, G. C., Prasad, B., Bhowmick, A., Roy, S. D., & Kundu, S. (2018). Performance of an energy harvesting cooperative cognitive radio network with hybrid spectrum access scheme. Wireless Personal Communications, 99(4), 1503–1520.CrossRef Das, G. C., Prasad, B., Bhowmick, A., Roy, S. D., & Kundu, S. (2018). Performance of an energy harvesting cooperative cognitive radio network with hybrid spectrum access scheme. Wireless Personal Communications, 99(4), 1503–1520.CrossRef
20.
Zurück zum Zitat Nguyen, T. N., Quang Minh, T. H., Tran, P. T., & Vozňák, M. (2018). Energy harvesting over Rician fading channel: a performance analysis for half-duplex bidirectional sensor networks under hardware impairments. Sensors, 18(6), 1781.CrossRef Nguyen, T. N., Quang Minh, T. H., Tran, P. T., & Vozňák, M. (2018). Energy harvesting over Rician fading channel: a performance analysis for half-duplex bidirectional sensor networks under hardware impairments. Sensors, 18(6), 1781.CrossRef
21.
Zurück zum Zitat Le, Q. N., Bao, V. N. Q., & An, B. (2018). Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: Design and outage analysis. Journal of Communications and Networks, 20(1), 29–46.CrossRef Le, Q. N., Bao, V. N. Q., & An, B. (2018). Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: Design and outage analysis. Journal of Communications and Networks, 20(1), 29–46.CrossRef
22.
Zurück zum Zitat Nguyen, D. K., Jayakody, D. N. K., Chatzinotas, S., Thompson, J. S., & Li, J. (2017). Wireless energy harvesting assisted two-way cognitive relay networks: Protocol design and performance analysis. IEEE Access, 5, 21447–21460.CrossRef Nguyen, D. K., Jayakody, D. N. K., Chatzinotas, S., Thompson, J. S., & Li, J. (2017). Wireless energy harvesting assisted two-way cognitive relay networks: Protocol design and performance analysis. IEEE Access, 5, 21447–21460.CrossRef
23.
Zurück zum Zitat Katti, A., & Lobiyal, D. K. (2020). Sensing coverage for wireless sensor networks in shadowed rician fading environments. Wireless Personal Communications, 110(3), 1109–1125.CrossRef Katti, A., & Lobiyal, D. K. (2020). Sensing coverage for wireless sensor networks in shadowed rician fading environments. Wireless Personal Communications, 110(3), 1109–1125.CrossRef
24.
Zurück zum Zitat Alimohammad, A., Fard, S. F., Cockburn, B. F., & Schlegal, C. (2009). Compact Rayleigh and Rician fading simulator based on random walk processes. IET Communications, 3(8), 1333–1342.CrossRef Alimohammad, A., Fard, S. F., Cockburn, B. F., & Schlegal, C. (2009). Compact Rayleigh and Rician fading simulator based on random walk processes. IET Communications, 3(8), 1333–1342.CrossRef
25.
Zurück zum Zitat Oloffsson, T., Ahlen, A., & Gidlund, M. (2016). Modelling of the fading statistics of wireless sensor network channels in industrial environments. IEEE Transactions on Signal Processing, 64(12), 3021–3034.MathSciNetCrossRefMATH Oloffsson, T., Ahlen, A., & Gidlund, M. (2016). Modelling of the fading statistics of wireless sensor network channels in industrial environments. IEEE Transactions on Signal Processing, 64(12), 3021–3034.MathSciNetCrossRefMATH
26.
Zurück zum Zitat Zhao, F., Lin, H., Zhong, C., Hadzi-Velkov, Z., Karagiannidis, G. K., & Zhang, Z. (2017). On the capacity of wireless powered communication systems over Rician fading channels. IEEE Transactions on Communications, 66(1), 404–417.CrossRef Zhao, F., Lin, H., Zhong, C., Hadzi-Velkov, Z., Karagiannidis, G. K., & Zhang, Z. (2017). On the capacity of wireless powered communication systems over Rician fading channels. IEEE Transactions on Communications, 66(1), 404–417.CrossRef
27.
Zurück zum Zitat Sahimi, M.K., MacCartney, G.R., Sun, S., & Rappaport, T.S. (2016). 28 GHz millimetre-wave ultrawideband small-scale fading models in wireless channels. IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–6. Sahimi, M.K., MacCartney, G.R., Sun, S., & Rappaport, T.S. (2016). 28 GHz millimetre-wave ultrawideband small-scale fading models in wireless channels. IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–6.
28.
Zurück zum Zitat Zhu, Y., Xin, Y., & Kam, P.Y. (2006). Outage probability of Rician fading relay channels. IEEE Military Communications conference (MILCOM), pp. 1–6. Zhu, Y., Xin, Y., & Kam, P.Y. (2006). Outage probability of Rician fading relay channels. IEEE Military Communications conference (MILCOM), pp. 1–6.
29.
Zurück zum Zitat Fernandes, C. A. R., da Costa, D. B., & de Almeida, A. L. (2014). Performance analysis of cooperative amplify-and-forward orthogonal frequency division multiplexing systems with power amplifier non-linearity. IET Communications, 8(18), 3223–3233.CrossRef Fernandes, C. A. R., da Costa, D. B., & de Almeida, A. L. (2014). Performance analysis of cooperative amplify-and-forward orthogonal frequency division multiplexing systems with power amplifier non-linearity. IET Communications, 8(18), 3223–3233.CrossRef
30.
Zurück zum Zitat Ghareeb, I., & Tashman, D. (2020). Statistical analysis of cascaded Rician fading channels. International Journal of Electronics Letters, 8(1), 46–59.CrossRef Ghareeb, I., & Tashman, D. (2020). Statistical analysis of cascaded Rician fading channels. International Journal of Electronics Letters, 8(1), 46–59.CrossRef
31.
Zurück zum Zitat Tong, H. A., & Le, A. T. (2021). Improving spectrum efficiency in CR-NOMA over Rician Fading Channel Under Imperfection CSI. 10th International Conference on Information and Automation for Sustainability (ICIAfS), pp. 477–482. IEEE. Tong, H. A., & Le, A. T. (2021). Improving spectrum efficiency in CR-NOMA over Rician Fading Channel Under Imperfection CSI. 10th International Conference on Information and Automation for Sustainability (ICIAfS), pp. 477–482. IEEE.
32.
Zurück zum Zitat Farzamnia, A., Mariappan, M., Moung, E., and Thangasalvam, R. (2022). BER Performance Evaluation of M-PSK and M-QAM Schemes in AWGN, Rayleigh and Rician Fading Channels. In: Mariappan, M., Arshad, M.R., Akmeliawati, R., Chong, C.S. (eds) Control Engineering in Robotics and Industrial Automation. Studies in Systems, Decision and Control, vol 371. https://doi.org/10.1007/978-3-030-74540-0_11 Farzamnia, A., Mariappan, M., Moung, E., and Thangasalvam, R. (2022). BER Performance Evaluation of M-PSK and M-QAM Schemes in AWGN, Rayleigh and Rician Fading Channels. In: Mariappan, M., Arshad, M.R., Akmeliawati, R., Chong, C.S. (eds) Control Engineering in Robotics and Industrial Automation. Studies in Systems, Decision and Control, vol 371. https://​doi.​org/​10.​1007/​978-3-030-74540-0_​11
33.
Zurück zum Zitat Ericsson, A.B. (2015). 5G energy performance. Ericsson White Paper. Ericsson, A.B. (2015). 5G energy performance. Ericsson White Paper.
34.
Zurück zum Zitat Corp, ZTE. (2014). Driving the convergence of the physical and digital world-whitepaper on next generation mobile technology. In Technical Report. Corp, ZTE. (2014). Driving the convergence of the physical and digital world-whitepaper on next generation mobile technology. In Technical Report.
35.
Zurück zum Zitat Telecom, S.K. (2014). SK Telecom 5G white paper, SK Telecom’s view on 5G vision, architecture, technology, and spectrum. In Technical Report. Telecom, S.K. (2014). SK Telecom 5G white paper, SK Telecom’s view on 5G vision, architecture, technology, and spectrum. In Technical Report.
36.
Zurück zum Zitat Kazmierski, T. J., & Beeby, S. (2014). Energy harvesting systems (p. 2011). Springer. Kazmierski, T. J., & Beeby, S. (2014). Energy harvesting systems (p. 2011). Springer.
37.
Zurück zum Zitat Shi, Z., Teh, K. C., & Li, K. H. (2013). Energy-efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Communications Letters, 17(3), 565–568.CrossRef Shi, Z., Teh, K. C., & Li, K. H. (2013). Energy-efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Communications Letters, 17(3), 565–568.CrossRef
38.
Zurück zum Zitat Bhowmick, A., Yadav, K., Roy, S. D., & Kundu, S. (2017). Throughput of an energy harvesting cognitive radio network based on prediction of primary user. IEEE Transactions on Vehicular Technology, 66(9), 8119–8128.CrossRef Bhowmick, A., Yadav, K., Roy, S. D., & Kundu, S. (2017). Throughput of an energy harvesting cognitive radio network based on prediction of primary user. IEEE Transactions on Vehicular Technology, 66(9), 8119–8128.CrossRef
39.
Zurück zum Zitat Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90–96.CrossRef Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90–96.CrossRef
40.
Zurück zum Zitat Le Borgne, Y. A., Santini, S., & Bontempi, G. (2007). Adaptive model selection for time series prediction in wireless sensor networks. Signal Processing, 87(12), 3010–3020.CrossRefMATH Le Borgne, Y. A., Santini, S., & Bontempi, G. (2007). Adaptive model selection for time series prediction in wireless sensor networks. Signal Processing, 87(12), 3010–3020.CrossRefMATH
41.
Zurück zum Zitat Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2015). Performance of an improved energy detector in multihop cognitive radio networks. IEEE transactions on Vehicular technology, 65(2), 732–743.CrossRef Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2015). Performance of an improved energy detector in multihop cognitive radio networks. IEEE transactions on Vehicular technology, 65(2), 732–743.CrossRef
42.
Zurück zum Zitat Simon, M. K., & Alouini, M.-S. (2004). Digital communication over fading channels (2nd ed.). John Wiley and Sons.CrossRef Simon, M. K., & Alouini, M.-S. (2004). Digital communication over fading channels (2nd ed.). John Wiley and Sons.CrossRef
43.
Zurück zum Zitat Chandra, A. (2011). Performance analysis of diversity combining techniques for digital signals in wireless fading channels (PhD thesis). Jadavpur University. Chandra, A. (2011). Performance analysis of diversity combining techniques for digital signals in wireless fading channels (PhD thesis). Jadavpur University.
44.
Zurück zum Zitat Nallagonda, S., Chandra, A., Roy, S. D., Kundu, S., Kukolev, P., & Prokes, A. (2016). Detection performance of cooperative spectrum sensing with hard decision fusion in fading channels. International Journal of Electronics, 103(2), 297–321.CrossRef Nallagonda, S., Chandra, A., Roy, S. D., Kundu, S., Kukolev, P., & Prokes, A. (2016). Detection performance of cooperative spectrum sensing with hard decision fusion in fading channels. International Journal of Electronics, 103(2), 297–321.CrossRef
45.
Zurück zum Zitat Gradshteyn, I.S., & Ryzhik, I.M. (2014). Table of integrals, series, and products. Academic press. Gradshteyn, I.S., & Ryzhik, I.M. (2014). Table of integrals, series, and products. Academic press.
46.
Zurück zum Zitat Arif, W., Hoque, S., Sen, D., & Baishya, S. (2015). A comprehensive analysis of spectrum handoff under different distribution models for cognitive radio networks. Wireless Personal Communications, 85(4), 2519–2548.CrossRef Arif, W., Hoque, S., Sen, D., & Baishya, S. (2015). A comprehensive analysis of spectrum handoff under different distribution models for cognitive radio networks. Wireless Personal Communications, 85(4), 2519–2548.CrossRef
Metadaten
Titel
Performance Analysis of a Prediction-Sensing Based Cooperative Energy Harvesting CRN Over Rician Fading Channels
verfasst von
Banani Talukdar
Deepak Kumar
Wasim Arif
Publikationsdatum
16.07.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09935-0

Weitere Artikel der Ausgabe 4/2022

Wireless Personal Communications 4/2022 Zur Ausgabe

Neuer Inhalt