Skip to main content
Erschienen in: Wireless Networks 6/2018

30.01.2017

Performance analysis of high-traffic cognitive radio communication system using hybrid spectrum access, prediction and monitoring techniques

verfasst von: Prabhat Thakur, Alok Kumar, S. Pandit, G. Singh, S. N. Satashia

Erschienen in: Wireless Networks | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the hybrid spectrum access and prediction techniques are exploited simultaneously in the high-traffic cognitive radio communication system, in order to enhance the throughput and overcome the problem of waiting states. The hybrid spectrum access is responsible for throughput enhancement by escaping the waiting states whereas the spectrum prediction alleviates the sensing errors in the high-traffic communication environment. The closed-form expression for the throughput of cognitive user (CU) communication is derived and validated the proposed approach with the reported literature. Moreover, a new framework is proposed to conquer the sharing issues of conventional and proposed approaches. In addition to this, the performance metrics of proposed framework such as the data-loss, energy-loss of the CU and interference at the PU have been analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alkyldiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefMATH Alkyldiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefMATH
2.
Zurück zum Zitat Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environment. IEEE Transactions on Wireless Communications, 6(2), 649–658.CrossRef Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environment. IEEE Transactions on Wireless Communications, 6(2), 649–658.CrossRef
3.
Zurück zum Zitat Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communication, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communication, 6(4), 13–18.CrossRef
4.
Zurück zum Zitat Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communication, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communication, 23(2), 201–220.CrossRef
5.
Zurück zum Zitat Thakur, P., Singh, G., & Satasia, S. N. (2016). Spectrum sharing in cognitive radio communication system using power constraints: A technical review. Perspectives in Science, 8, 651–653.CrossRef Thakur, P., Singh, G., & Satasia, S. N. (2016). Spectrum sharing in cognitive radio communication system using power constraints: A technical review. Perspectives in Science, 8, 651–653.CrossRef
6.
Zurück zum Zitat Khoshkholg, M. G., Navaie, K., & Yanikomeroglu, H. (2010). Access strategies for spectrum sharing in fading environment: Overlay, underlay and mixed. IEEE Transactions on Mobile Computing, 9(12), 1780–1793.CrossRef Khoshkholg, M. G., Navaie, K., & Yanikomeroglu, H. (2010). Access strategies for spectrum sharing in fading environment: Overlay, underlay and mixed. IEEE Transactions on Mobile Computing, 9(12), 1780–1793.CrossRef
7.
Zurück zum Zitat Sharma, S. K., Chatzinotas, S. and Ottersten, B. (2014). A hybrid cognitive transceiver architecture: Sensing throughput tradeoff. Proceedings cognitive radio wireless networks and communications (CROWNCOM), Oulu Finland (pp 143–149). Sharma, S. K., Chatzinotas, S. and Ottersten, B. (2014). A hybrid cognitive transceiver architecture: Sensing throughput tradeoff. Proceedings cognitive radio wireless networks and communications (CROWNCOM), Oulu Finland (pp 143–149).
8.
Zurück zum Zitat Jiang, X., Wang, K. K., Zang, Y., & Edwards, D. (2013). On hybrid overlay-underlay dynamic spectrum access: Double-threshold energy detection and Markov model. IEEE Transactions on Vehicular Technology, 62(8), 4078–4083.CrossRef Jiang, X., Wang, K. K., Zang, Y., & Edwards, D. (2013). On hybrid overlay-underlay dynamic spectrum access: Double-threshold energy detection and Markov model. IEEE Transactions on Vehicular Technology, 62(8), 4078–4083.CrossRef
9.
Zurück zum Zitat Pandit, S., & Singh, G. (2014). Throughput maximization with reduced data loss rate in cognitive radio networks. Telecommunication Systems, 57(2), 209–215.CrossRef Pandit, S., & Singh, G. (2014). Throughput maximization with reduced data loss rate in cognitive radio networks. Telecommunication Systems, 57(2), 209–215.CrossRef
10.
11.
Zurück zum Zitat Thakur, P., Kumar, A., Pandit, S., Singh, G. and Satasia, S. N. (2016). Frame structures for hybrid spectrum accessing strategy in cognitive radio communication system. Proceedings IEEE international conference on contemporary computing (IC-3), Noida. Thakur, P., Kumar, A., Pandit, S., Singh, G. and Satasia, S. N. (2016). Frame structures for hybrid spectrum accessing strategy in cognitive radio communication system. Proceedings IEEE international conference on contemporary computing (IC-3), Noida.
12.
Zurück zum Zitat Thakur, P., Kumar, A., Pandit, S., Singh, G., & Satasia, S. N. (2016). Advanced frame structures for hybrid spectrum accessing strategy in cognitive radio communication system. IEEE Communication Letters. doi:10.1109/LCOMM.2016.2622260. Thakur, P., Kumar, A., Pandit, S., Singh, G., & Satasia, S. N. (2016). Advanced frame structures for hybrid spectrum accessing strategy in cognitive radio communication system. IEEE Communication Letters. doi:10.​1109/​LCOMM.​2016.​2622260.
13.
Zurück zum Zitat Jian, Y., & Hang-Sheng, Z. (2015). Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Communication Letters, 19(10), 1338–1341. Jian, Y., & Hang-Sheng, Z. (2015). Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Communication Letters, 19(10), 1338–1341.
14.
Zurück zum Zitat Pei, E., Liang, Y., KC, T., & Li, K. (2011). Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE Journal on Selected Areas in Communication, 29(8), 1648–1659.CrossRef Pei, E., Liang, Y., KC, T., & Li, K. (2011). Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE Journal on Selected Areas in Communication, 29(8), 1648–1659.CrossRef
15.
Zurück zum Zitat Chatterjee, S., Maity, S., & Acharya, T. (2014). Energy efficient cognitive radio system for joint spectrum sensing and data transmission. IEEE Journal on Emerging Selected Topics in Circuits Systems, 4(3), 292–300.CrossRef Chatterjee, S., Maity, S., & Acharya, T. (2014). Energy efficient cognitive radio system for joint spectrum sensing and data transmission. IEEE Journal on Emerging Selected Topics in Circuits Systems, 4(3), 292–300.CrossRef
16.
Zurück zum Zitat Stotas, S. and Nallanathan, A. (2010). Overcoming the sensing-throughput trade-off in cognitive radio networks. Proceedings IEEE international conference on communications (ICC), Cape Town (pp 1–5). Stotas, S. and Nallanathan, A. (2010). Overcoming the sensing-throughput trade-off in cognitive radio networks. Proceedings IEEE international conference on communications (ICC), Cape Town (pp 1–5).
17.
Zurück zum Zitat Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitve radio networks. IEEE Wireless Communications, 20(2), 90–96.CrossRef Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitve radio networks. IEEE Wireless Communications, 20(2), 90–96.CrossRef
18.
Zurück zum Zitat Cristian, I., & Moh, S. (2015). A low-interference channel states prediction algorithm for instantaneous spectrum access in cognitive radio networks. Wireless Personal Communications, 84(4), 2599–2610.CrossRef Cristian, I., & Moh, S. (2015). A low-interference channel states prediction algorithm for instantaneous spectrum access in cognitive radio networks. Wireless Personal Communications, 84(4), 2599–2610.CrossRef
19.
Zurück zum Zitat Barnes, S. D., Maharaj, B. T., & Alfa, A. S. (2016). Cooperative prediction for cognitive radio networks. Wireless Personal Communications, 89(4), 1177–1202.CrossRef Barnes, S. D., Maharaj, B. T., & Alfa, A. S. (2016). Cooperative prediction for cognitive radio networks. Wireless Personal Communications, 89(4), 1177–1202.CrossRef
20.
Zurück zum Zitat Sharma, S. K., Bhogle, T. E., Le, L. B., & Wang, X. (2015). Cognitive radio techniques under practical imperfections: A survey. IEEE Cummunications Surveys & Tutorials, 17(4), 1858–1884.CrossRef Sharma, S. K., Bhogle, T. E., Le, L. B., & Wang, X. (2015). Cognitive radio techniques under practical imperfections: A survey. IEEE Cummunications Surveys & Tutorials, 17(4), 1858–1884.CrossRef
21.
Zurück zum Zitat Ban, T. W., Choi, W., Jung, B. C., & Sung, D. K. (2009). Multi-user diversity in a spectrum sharing system. IEEE Transaction on Wireless Communication, 8(1), 102–106.CrossRef Ban, T. W., Choi, W., Jung, B. C., & Sung, D. K. (2009). Multi-user diversity in a spectrum sharing system. IEEE Transaction on Wireless Communication, 8(1), 102–106.CrossRef
22.
Zurück zum Zitat Chu, T. M. C., Phan, H., & Zepernick, H.-J. (2014). Hybrid interweave-underlay spectrum access for cognitive cooperative radio networks. IEEE Transactions on Communications, 62(7), 2183–2197.CrossRef Chu, T. M. C., Phan, H., & Zepernick, H.-J. (2014). Hybrid interweave-underlay spectrum access for cognitive cooperative radio networks. IEEE Transactions on Communications, 62(7), 2183–2197.CrossRef
23.
Zurück zum Zitat Boyd, S. W., Frye, J. M., Pursley, M. B., & Royster, T. C., IV. (2012). Spectrum monitoring during reception in dynamic spectrum access cognitive radio networks. IEEE Transactions on Communications, 60(2), 547–558.CrossRef Boyd, S. W., Frye, J. M., Pursley, M. B., & Royster, T. C., IV. (2012). Spectrum monitoring during reception in dynamic spectrum access cognitive radio networks. IEEE Transactions on Communications, 60(2), 547–558.CrossRef
24.
Zurück zum Zitat Ali, A., & Hamouda, W. (2015). Spectrum monitoring using energy ratio algorithm for OFDM-based cognitive radio networks. IEEE Transactions on Wireless Communications, 14(4), 2257–2268.CrossRef Ali, A., & Hamouda, W. (2015). Spectrum monitoring using energy ratio algorithm for OFDM-based cognitive radio networks. IEEE Transactions on Wireless Communications, 14(4), 2257–2268.CrossRef
25.
Zurück zum Zitat Orooji, M., Soltanmohammadi, E., & Pour, M. N. (2015). Improving detection delay in cognitive radio using secondary-user receiver statistics. IEEE Transactions on Vehicular Technology, 64(9), 4041–4055.CrossRef Orooji, M., Soltanmohammadi, E., & Pour, M. N. (2015). Improving detection delay in cognitive radio using secondary-user receiver statistics. IEEE Transactions on Vehicular Technology, 64(9), 4041–4055.CrossRef
26.
Zurück zum Zitat Liang, Y. C., Zheng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing throughput trade-off for cognitive radio networks. IEEE Transaction on Wireless Communications, 7(4), 1326–1337.CrossRef Liang, Y. C., Zheng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing throughput trade-off for cognitive radio networks. IEEE Transaction on Wireless Communications, 7(4), 1326–1337.CrossRef
27.
Zurück zum Zitat Masonta, M., Mzyece, M., & Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: A survey. IEEE Commununication Survey and Tutorials, 15(3), 1088–1107.CrossRef Masonta, M., Mzyece, M., & Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: A survey. IEEE Commununication Survey and Tutorials, 15(3), 1088–1107.CrossRef
28.
Zurück zum Zitat Pandit, S., & Singh, G. (2015). Backoff algorithm in cognitive radio MAC protocol for throughput enhancement. IEEE Transactions on Vehicular Technology, 64(5), 1991–2000.CrossRef Pandit, S., & Singh, G. (2015). Backoff algorithm in cognitive radio MAC protocol for throughput enhancement. IEEE Transactions on Vehicular Technology, 64(5), 1991–2000.CrossRef
Metadaten
Titel
Performance analysis of high-traffic cognitive radio communication system using hybrid spectrum access, prediction and monitoring techniques
verfasst von
Prabhat Thakur
Alok Kumar
S. Pandit
G. Singh
S. N. Satashia
Publikationsdatum
30.01.2017
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1440-7

Weitere Artikel der Ausgabe 6/2018

Wireless Networks 6/2018 Zur Ausgabe

Neuer Inhalt