Skip to main content

2019 | OriginalPaper | Buchkapitel

Performance Analysis of Vedic Multiplier with Different Square Root BK Adders

verfasst von : Ranjith B. Gowda, R. M. Banakar, Basavaprasad

Erschienen in: Emerging Research in Computing, Information, Communication and Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multiplication is the main basic operation used by many of the digital signal processor (DSP) and vector processors. DSP application repeatedly performs the operations like signal processing, filtering, processing of discrete signal data, and radar signal processing and use intensive fast Fourier transform (FFT) operations. FFT computation uses butterfly structures, where multiplication is the basic operation. DSPs have to execute a large number of instructions per second, which in turn uses so many FFT computations, and hence, the multiplication operation decides the performance of DSP. Designing a high-performance multiplier improves the overall performance of the processor. Many multiplier architectures have been proposed in the past few decades with the attractive performance, power consumption, delay, area, throughput, etc., and the most acceptable multiplier among them is the Vedic multiplier. When high performance is necessary, Vedic multiplier will be the best choice. Operation of Vedic multiplier is based on ancient Vedic mathematics. This earlier multiplier has been modified to improve the performance. There are 16 sutras for the multiplication operation in this method. These sutras are used to solve large range of multiplication problems in a natural way. This method of multiplication is based on Urdhva Triyagbhyam sutra, which means horizontal and cross-wire technique of multiplication operation. This method uses partial product generation in parallel and eliminates the unwanted steps with zero. Urdhva Triyagbhyam sutra is an efficient sutra which enhances the execution speed of the multiplier by minimizing the delay. This work describes the overall performance of the Vedic multiplier with different high-speed adders like regular square root BK adder (RSRBKA), Modified square root BK adder (MSRBKA) and proposed optimized square root BK adder (OSR-BK-A). The proposed designs are simulated and synthesized in Xilinx ISE 14.7, and the results are tabulated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wallace, C. S. (1964). A suggestion for a fast multiplier. IEEE Transactions on electronic Computers, 1, 14–17.CrossRef Wallace, C. S. (1964). A suggestion for a fast multiplier. IEEE Transactions on electronic Computers, 1, 14–17.CrossRef
2.
Zurück zum Zitat Booth, A. D. (1951). A signed binary multiplication technique. The Quarterly Journal of Mechanics and Applied Mathematics, 4(2), 236–240.MathSciNetCrossRef Booth, A. D. (1951). A signed binary multiplication technique. The Quarterly Journal of Mechanics and Applied Mathematics, 4(2), 236–240.MathSciNetCrossRef
3.
Zurück zum Zitat Bharath, J. S. S., & Tirathji, K. (1986). Vedic mathematics or sixteen simple sutras from the vedas. Varanasi (India): Motilal Banarsidas. Bharath, J. S. S., & Tirathji, K. (1986). Vedic mathematics or sixteen simple sutras from the vedas. Varanasi (India): Motilal Banarsidas.
4.
Zurück zum Zitat Kulkarni, S. (2007). Discrete fourier transform (DFT) by using vedic mathematics. Report, vedicmathsindia. blogspot. com. Kulkarni, S. (2007). Discrete fourier transform (DFT) by using vedic mathematics. Report, vedicmathsindia. blogspot. com.
5.
Zurück zum Zitat Nicholas, A., Williams, K., & Pickles, J. (1984). Application of urdhava sutra. Roorkee (India): Spiritual Study Group. Nicholas, A., Williams, K., & Pickles, J. (1984). Application of urdhava sutra. Roorkee (India): Spiritual Study Group.
6.
Zurück zum Zitat Saokar, S. S., Banakar, R., & Siddamal, S. (2012). High speed signed multiplier for digital signal processing applications. In 2012 IEEE International Conference on Signal Processing, Computing and Control (ISPCC) (pp. 1–6). IEEE. Saokar, S. S., Banakar, R., & Siddamal, S. (2012). High speed signed multiplier for digital signal processing applications. In 2012 IEEE International Conference on Signal Processing, Computing and Control (ISPCC) (pp. 1–6). IEEE.
7.
Zurück zum Zitat Naik, R. N., Reddy, P. S. N., & Mohan, K. M. (2013). Design of vedic multiplier for digital signal processing applications. International Journal of Engineering Trends and Technology, 4(7). Naik, R. N., Reddy, P. S. N., & Mohan, K. M. (2013). Design of vedic multiplier for digital signal processing applications. International Journal of Engineering Trends and Technology, 4(7).
8.
Zurück zum Zitat Thapliyal, H., & Srinivas, M. (2005). An efficient method of elliptic curve encryption using ancient Indian vedic mathematics. In 2005 48th Midwest Symposium on Circuits and Systems (pp. 826–828). IEEE. Thapliyal, H., & Srinivas, M. (2005). An efficient method of elliptic curve encryption using ancient Indian vedic mathematics. In 2005 48th Midwest Symposium on Circuits and Systems (pp. 826–828). IEEE.
9.
Zurück zum Zitat Dhillon, H. S., & Mitra, A. (2008). A reduced-bit multiplication algorithm for digital arithmetic. International Journal of Computational and Mathematical Sciences, 2(2). Dhillon, H. S., & Mitra, A. (2008). A reduced-bit multiplication algorithm for digital arithmetic. International Journal of Computational and Mathematical Sciences, 2(2).
10.
Zurück zum Zitat Saxena, P. (2015). Design of low power and high speed carry select adder using Brent Kung adder. International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI-SATA). IEEE. Saxena, P. (2015). Design of low power and high speed carry select adder using Brent Kung adder. International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI-SATA). IEEE.
Metadaten
Titel
Performance Analysis of Vedic Multiplier with Different Square Root BK Adders
verfasst von
Ranjith B. Gowda
R. M. Banakar
Basavaprasad
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-6001-5_21

Neuer Inhalt