2014 | OriginalPaper | Buchkapitel
Performance Assessment of a Clinical Decision Support System for Analysis of Heart Failure
verfasst von : G. Guidi, P. Melillo, M. C. Pettenati, M. Milli, E. Iadanza
Erschienen in: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
In this paper we compare five machine learning techniques in dealing with typical Heart Failure (HF) data. We developed a Clinical Decision Support System (CDSS) for the analysis of Heart Failure patient that provides various outputs such as an HF severity evaluation, an HF type prediction, as well as a management interface that compares the various patient’s follow-ups. To realize these smart functions we used machine learning techniques and in this paper we compare the performance of a neural network, a support vector machine, a system with fuzzy rules genetically produced, a Classification and regression tree and its direct evolution which is the Random Forest, in analyzing our database. Best performances (intended as accuracy and less critical errors committed) in both HF severity evaluation and HF type prediction functions are obtained by using the Random Forest algorithm.