Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 6/2019

13.02.2019

Performance assessment of Pr1−xSrxCo0.8Cu0.2O3−δ perovskite oxides as cathode material for solid oxide fuel cells with Ce0.8Sm0.2O1.9 electrolyte

verfasst von: Sanlong Wang, Xiangwei Meng, Jinghai Yang, Lili Yang, Lizhong Wang, Mingxing Song, Yiming Zhou, Shiquan Lü

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, Pr1−xSrxCo0.8Cu0.2O3−δ (x = 0.2, 0.3, 0.4, 0.5, 0.6) cathode material is investigated for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Pr1−xSrxCo0.8Cu0.2O3−δ oxides are prepared by the EDTA-citrate complexing method. XRD results show that there is a structural change from orthorhombic (x = 0.2 and 0.3) to cubic (x = 0.4, 0.5 and 0.6) in Pr1−xSrxCo0.8Cu0.2O3−δ system. The electrical conductivities of all the samples are all higher than 523 S cm−1 between 500 and 800 °C. The semiconductor-to-metal conductivity transition takes place at around x = 0.4. In order to further reduce thermal expansion coefficients (TECs) and improve electrochemical performance of the Pr1−xSrxCo0.8Cu0.2O3−δ cathode, we fabricate Pr0.5Sr0.5Co0.8Cu0.2O3−δ–x wt% Ce0.8Sm0.2O1.9 (PSCC–xSDC, x = 20–60) composite cathodes. In PSCC–xSDC electrode, the TEC and polarization resistance (Rp) both decrease with the addition of SDC. The PSCC–50SDC composite cathode has the lowest Rp. The lowest Rp 0.029 Ω cm2 is obtained at 800 °C for PSCC–50SDC electrode. Subsequently, we fabricate SDC (300 µm thick) electrolyte-supported fuel cell with PSCC–50SDC cathodes. The maximum power densities is 428 mW cm−2 at 800 °C. The present results demonstrate that PSCC–50SDC composite is a promising candidate cathode for IT-SOFCs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N.Q. Minh, Solid oxide fuel cell technology-features and applications. Solid State Ionics. 174, 271–277 (2004)CrossRef N.Q. Minh, Solid oxide fuel cell technology-features and applications. Solid State Ionics. 174, 271–277 (2004)CrossRef
2.
Zurück zum Zitat D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)CrossRef D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)CrossRef
3.
Zurück zum Zitat N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183–213 (2003)CrossRef N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183–213 (2003)CrossRef
4.
Zurück zum Zitat R. Li, G. Chen, K. Wu, Y.H. Cheng, La0.8Sr1.2CoO4 + δ-CGO composite as cathode on La0.9Sr0.1Ga0.8Mg0.2O3–δ electrolyte for intermediate temperature solid oxide fuel cells. J. Power Sourc. 232, 332–337 (2013)CrossRef R. Li, G. Chen, K. Wu, Y.H. Cheng, La0.8Sr1.2CoO4 + δ-CGO composite as cathode on La0.9Sr0.1Ga0.8Mg0.2O3–δ electrolyte for intermediate temperature solid oxide fuel cells. J. Power Sourc. 232, 332–337 (2013)CrossRef
5.
Zurück zum Zitat R. Li, D. Wang, L. Ge, S. He, H. Chen, L. Guo, Effect of Bi2O3 on the electrochemical performance of LaBaCo2O5 + δ cathode for intermediate-temperature solid oxide fuel cells. Ceram. Int. 40, 2599–2603 (2014)CrossRef R. Li, D. Wang, L. Ge, S. He, H. Chen, L. Guo, Effect of Bi2O3 on the electrochemical performance of LaBaCo2O5 + δ cathode for intermediate-temperature solid oxide fuel cells. Ceram. Int. 40, 2599–2603 (2014)CrossRef
6.
Zurück zum Zitat E. Koep, D.S. Mebane, R. Das, C. Compson, M. Liu, Electrochem. Solid-State Lett. 8, A592–A595 (2005)CrossRef E. Koep, D.S. Mebane, R. Das, C. Compson, M. Liu, Electrochem. Solid-State Lett. 8, A592–A595 (2005)CrossRef
7.
Zurück zum Zitat M.J. Jørgensen, S. Primdahl, C. Bagger, M. Mogensen, Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics 139, 1–11 (2001)CrossRef M.J. Jørgensen, S. Primdahl, C. Bagger, M. Mogensen, Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics 139, 1–11 (2001)CrossRef
8.
Zurück zum Zitat S.B. Adler, J.A. Lane, B.C.H. Steele, Electrode kinetics of porous mixed-conducting oxygen electrodes. J. Electrochem. Soc. 143, 3554–3564 (1996)CrossRef S.B. Adler, J.A. Lane, B.C.H. Steele, Electrode kinetics of porous mixed-conducting oxygen electrodes. J. Electrochem. Soc. 143, 3554–3564 (1996)CrossRef
9.
Zurück zum Zitat H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode. Solid State Ionics 132, 279–285 (2000)CrossRef H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode. Solid State Ionics 132, 279–285 (2000)CrossRef
10.
Zurück zum Zitat Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid oxide fuel cells. Nature 431, 170–173 (2004)CrossRef Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid oxide fuel cells. Nature 431, 170–173 (2004)CrossRef
11.
Zurück zum Zitat K. Yasumoto, Y. Inagaki, M. Shiono, M. Dokiya, An (La,Sr)(Co,Cu)O3–δ cathode for reduced temperature SOFCs. Solid State Ionics 148, 545–549 (2002)CrossRef K. Yasumoto, Y. Inagaki, M. Shiono, M. Dokiya, An (La,Sr)(Co,Cu)O3–δ cathode for reduced temperature SOFCs. Solid State Ionics 148, 545–549 (2002)CrossRef
12.
Zurück zum Zitat T. Ishihara, T. Kudo, H. Matsuda, Y. Takita, Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation. J. Electrochem. Soc. 142, 1519–1524 (1995)CrossRef T. Ishihara, T. Kudo, H. Matsuda, Y. Takita, Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation. J. Electrochem. Soc. 142, 1519–1524 (1995)CrossRef
13.
Zurück zum Zitat L. Cong, T. He, Y. Ji, P. Guan, Y. Huang, W. Su, Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3–δ by glycine–nitrate combustion method. J. Alloys Compd. 348, 325–331 (2003)CrossRef L. Cong, T. He, Y. Ji, P. Guan, Y. Huang, W. Su, Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3–δ by glycine–nitrate combustion method. J. Alloys Compd. 348, 325–331 (2003)CrossRef
14.
Zurück zum Zitat H.C. Yu, K.Z. Fung, Electrode properties of La1–xSrxCuO2.5–δ as new cathode materials for intermediate-temperature SOFCs. J. Power Sources 133, 162–168 (2004)CrossRef H.C. Yu, K.Z. Fung, Electrode properties of La1–xSrxCuO2.5–δ as new cathode materials for intermediate-temperature SOFCs. J. Power Sources 133, 162–168 (2004)CrossRef
15.
Zurück zum Zitat K. Vidal, L.M. Rodríguez-Martínez, L. Ortega-San-Martín, E. Díez-Linaza, M.L. Nó, T. Rojo, A. Laresgoiti, M.I. Arriortua, Isolating the effect of doping in the structure and conductivity of (Ln1–xMx)FeO3–δ perovskites. Solid State Ionics 178, 1310–1316 (2007)CrossRef K. Vidal, L.M. Rodríguez-Martínez, L. Ortega-San-Martín, E. Díez-Linaza, M.L. Nó, T. Rojo, A. Laresgoiti, M.I. Arriortua, Isolating the effect of doping in the structure and conductivity of (Ln1–xMx)FeO3–δ perovskites. Solid State Ionics 178, 1310–1316 (2007)CrossRef
16.
Zurück zum Zitat L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1–xSrxCo1–yFeyO3. Part 2. The system La1–xSrxCo0.2Fe0.8–O3. Solid State Ionics 76, 273–283 (1995)CrossRef L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1–xSrxCo1–yFeyO3. Part 2. The system La1–xSrxCo0.2Fe0.8–O3. Solid State Ionics 76, 273–283 (1995)CrossRef
17.
Zurück zum Zitat F.J. Jin, Y. Shen, R. Wang, T.M. He, Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5 + δ as cathode material for intermediate temperature solid-oxide fuel cells. J. Power Sourc. 234, 244–251 (2013)CrossRef F.J. Jin, Y. Shen, R. Wang, T.M. He, Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5 + δ as cathode material for intermediate temperature solid-oxide fuel cells. J. Power Sourc. 234, 244–251 (2013)CrossRef
18.
Zurück zum Zitat G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, S.J. Wang, J. Ding, T.C. Sum, C.H.A. Huan, T. Wu, Comparative study of room-temperature ferromagnetism in Cu-Doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20, 3521–3527 (2008)CrossRef G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, S.J. Wang, J. Ding, T.C. Sum, C.H.A. Huan, T. Wu, Comparative study of room-temperature ferromagnetism in Cu-Doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20, 3521–3527 (2008)CrossRef
19.
Zurück zum Zitat G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu, Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3–δ nanostructures. Physical Review B 79, 174406 (2009)CrossRef G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu, Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3–δ nanostructures. Physical Review B 79, 174406 (2009)CrossRef
20.
Zurück zum Zitat H.W. Brinks, H. Fjellvåg, A. Kjekshus, B.C. Hauback, Structure and magnetism of Pr1–xSrxFeO3–δ. J. Solid State Chem. 150, 149–233 (2000)CrossRef H.W. Brinks, H. Fjellvåg, A. Kjekshus, B.C. Hauback, Structure and magnetism of Pr1–xSrxFeO3–δ. J. Solid State Chem. 150, 149–233 (2000)CrossRef
21.
Zurück zum Zitat J. Piao, K. Sun, N. Zhang, X. Chen, S. Xu, D. Zhou, Preparation and characterization of Pr1–xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells. J. Power Sourc. 172, 633–640 (2007)CrossRef J. Piao, K. Sun, N. Zhang, X. Chen, S. Xu, D. Zhou, Preparation and characterization of Pr1–xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells. J. Power Sourc. 172, 633–640 (2007)CrossRef
22.
Zurück zum Zitat E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.C. Grenier, Oxygen transport properties of La2Ni1–xCuxO4+δ mixed conducting oxides. Solid State Sci. 5, 973–981 (2003)CrossRef E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.C. Grenier, Oxygen transport properties of La2Ni1–xCuxO4+δ mixed conducting oxides. Solid State Sci. 5, 973–981 (2003)CrossRef
23.
Zurück zum Zitat H. Lv, Y. Wu, B. Huang, B. Zhao, K. Hu, Structure and electrochemical properties of Sm0.5Sr0.5Co1–xFexO3–δ cathodes for solid oxide fuel cells. Solid State Ionics 177, 901–906 (2006)CrossRef H. Lv, Y. Wu, B. Huang, B. Zhao, K. Hu, Structure and electrochemical properties of Sm0.5Sr0.5Co1–xFexO3–δ cathodes for solid oxide fuel cells. Solid State Ionics 177, 901–906 (2006)CrossRef
24.
Zurück zum Zitat H. Takahashi, F. Munakata, M. Yamanaka, Ab initio study of the electronic structures in LaCoO3–SrCoO3 systems. Phys. Rev. B 57, 15211 (1998)CrossRef H. Takahashi, F. Munakata, M. Yamanaka, Ab initio study of the electronic structures in LaCoO3–SrCoO3 systems. Phys. Rev. B 57, 15211 (1998)CrossRef
25.
Zurück zum Zitat K.T. Lee, A. Manthiram, LaSr3Fe3–yCoyO10–δ (0 ≤ y ≤ 1.5) intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells. Chem. Mater. 18, 1621–1626 (2006)CrossRef K.T. Lee, A. Manthiram, LaSr3Fe3–yCoyO10–δ (0 ≤ y ≤ 1.5) intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells. Chem. Mater. 18, 1621–1626 (2006)CrossRef
26.
Zurück zum Zitat M. Karmele Vidal, L. Rodríguez-Martínez, L. Ortega-San-Martín, E. Díez-Linaza, M. Luisa Nó, T. Rojo, A. Laresgoiti, M. Isabel Arriortua, Isolating the effect of doping in the structure and conductivity of (Ln1–xMx)FeO3–δ perovskites. Solid State Ionics 178, 1310–1316 (2007)CrossRef M. Karmele Vidal, L. Rodríguez-Martínez, L. Ortega-San-Martín, E. Díez-Linaza, M. Luisa Nó, T. Rojo, A. Laresgoiti, M. Isabel Arriortua, Isolating the effect of doping in the structure and conductivity of (Ln1–xMx)FeO3–δ perovskites. Solid State Ionics 178, 1310–1316 (2007)CrossRef
27.
Zurück zum Zitat T.Z. Jiang, Z.H. Wang, B.Y. Ren, J.S. Qiao, W. Sun, K.N. Sun, Compositionally continuously graded cathode layers of (Ba0.5Sr0.5)(Fe0.91Al0.09)O3–δ–Gd0.1Ce0.9O2 by wet powder spraying technique for solid oxide fuel cells. J. Power Sources 247, 858–864 (2014)CrossRef T.Z. Jiang, Z.H. Wang, B.Y. Ren, J.S. Qiao, W. Sun, K.N. Sun, Compositionally continuously graded cathode layers of (Ba0.5Sr0.5)(Fe0.91Al0.09)O3–δ–Gd0.1Ce0.9O2 by wet powder spraying technique for solid oxide fuel cells. J. Power Sources 247, 858–864 (2014)CrossRef
28.
Zurück zum Zitat G.Z. Xing, Y. Wang, J.I. Wong, Y.M. Shi, Z.X. Huang, S. Li, H.Y. Yang, Hybrid CuO/SnO2 nanocomposites: towards cost-effective and high performance binder free lithium ion batteries anode materials. Appl. Phys. Lett. 105, 143905 (2014)CrossRef G.Z. Xing, Y. Wang, J.I. Wong, Y.M. Shi, Z.X. Huang, S. Li, H.Y. Yang, Hybrid CuO/SnO2 nanocomposites: towards cost-effective and high performance binder free lithium ion batteries anode materials. Appl. Phys. Lett. 105, 143905 (2014)CrossRef
29.
Zurück zum Zitat S.B. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics 135, 603–612 (2000)CrossRef S.B. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics 135, 603–612 (2000)CrossRef
30.
Zurück zum Zitat S.Y. Li, Z. Lü, B. Wei, X.Q. Huang, J.P. Miao, Z.G. Liu Performances of Ba0.5Sr0.5Co0.6Fe0.4O3–δ–Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. J. Alloys Compd. 448, 116–121 (2008)CrossRef S.Y. Li, Z. Lü, B. Wei, X.Q. Huang, J.P. Miao, Z.G. Liu Performances of Ba0.5Sr0.5Co0.6Fe0.4O3–δ–Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. J. Alloys Compd. 448, 116–121 (2008)CrossRef
31.
Zurück zum Zitat S. Lü, G. Long, Y. Ji, X. Meng, C. Sun, Characterization of SmBaCoFeO5 + δ-Ce0.9Gd0.1O1.95 composite cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 35, 7930–7935 (2010)CrossRef S. Lü, G. Long, Y. Ji, X. Meng, C. Sun, Characterization of SmBaCoFeO5 + δ-Ce0.9Gd0.1O1.95 composite cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 35, 7930–7935 (2010)CrossRef
32.
Zurück zum Zitat Y. Ji, H. Wang, H. Zhang, Gd0.8Sr0.2CoO3 – δ–Sm0.1Ce0.9O1.95 composite cathode for intermediate temperature solid oxide fuel cells. Mater. Res. Bull. 85, 30–34 (2017)CrossRef Y. Ji, H. Wang, H. Zhang, Gd0.8Sr0.2CoO3 – δ–Sm0.1Ce0.9O1.95 composite cathode for intermediate temperature solid oxide fuel cells. Mater. Res. Bull. 85, 30–34 (2017)CrossRef
33.
Zurück zum Zitat B. Wei, Z. Lü, X. Huang, M. Liu, N. Li, W. Su, J. Power Sourc. 176, 1–8 (2008)CrossRef B. Wei, Z. Lü, X. Huang, M. Liu, N. Li, W. Su, J. Power Sourc. 176, 1–8 (2008)CrossRef
34.
Zurück zum Zitat K.T. Lee, A. Manthiram, Effect of cation doping on the physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3–δ(M = Ti, Cr, Mn, Fe, Co, and Cu) cathodes. Solid State Ionics 178, 995–1000 (2007)CrossRef K.T. Lee, A. Manthiram, Effect of cation doping on the physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3–δ(M = Ti, Cr, Mn, Fe, Co, and Cu) cathodes. Solid State Ionics 178, 995–1000 (2007)CrossRef
35.
Zurück zum Zitat Ho-ChiehY.Kuan-Zong Fung, Electrode properties of La1–xSrxCuO2.5–δ as new cathode materials for intermediate-temperature SOFCs. J. Power Sourc. 133, 162–168 (2004)CrossRef Ho-ChiehY.Kuan-Zong Fung, Electrode properties of La1–xSrxCuO2.5–δ as new cathode materials for intermediate-temperature SOFCs. J. Power Sourc. 133, 162–168 (2004)CrossRef
36.
Zurück zum Zitat M.M. Li, J.G. Cheng, Y. Gan, S.S. Li, B.B. He, W.Z. Sun, Effects of strontium doping on the structure, oxygen nonstoichiometry and electrochemical performance of Pr2–xSrxNi0.6Cu0.4O4 + δ (0.1 ≤ x ≤ 0.5) cathode materials. J. Power Sourc. 275, 151–158 (2015)CrossRef M.M. Li, J.G. Cheng, Y. Gan, S.S. Li, B.B. He, W.Z. Sun, Effects of strontium doping on the structure, oxygen nonstoichiometry and electrochemical performance of Pr2–xSrxNi0.6Cu0.4O4 + δ (0.1 ≤ x ≤ 0.5) cathode materials. J. Power Sourc. 275, 151–158 (2015)CrossRef
Metadaten
Titel
Performance assessment of Pr1−xSrxCo0.8Cu0.2O3−δ perovskite oxides as cathode material for solid oxide fuel cells with Ce0.8Sm0.2O1.9 electrolyte
verfasst von
Sanlong Wang
Xiangwei Meng
Jinghai Yang
Lili Yang
Lizhong Wang
Mingxing Song
Yiming Zhou
Shiquan Lü
Publikationsdatum
13.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 6/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-00886-0

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Science: Materials in Electronics 6/2019 Zur Ausgabe

Neuer Inhalt