Skip to main content

2024 | OriginalPaper | Buchkapitel

Performance Comparison of Shape Fitting and Moments-Based Techniques for Detection of Convective Cloud Location

verfasst von : Vidya B. Patil, Anuradha C. Phadke, Subrata Kumar Das

Erschienen in: Advances in Photonics and Electronics

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mesoscale convective systems (MCSs) represent an aggregation of storms extending hundreds of kilometers. MCSs are one of the significant factors for precipitation over tropical and subtropical regions of the Earth. They also cause severe weather conditions such as floods. Therefore, the identification and prediction of such events can be useful for informing people about their occurrences. MCSs are made up of cold convective clouds representing infrared brightness temperature below 220֠K. One of the important steps to get the location of these convective clouds is to get the center of the detected clouds. A cloud is a deformable object that changes its shape, which is irregular, leading to a non-convex polygon. So, getting its location is a challenging task. In the proposed work, two techniques for getting cloud center location are implemented: approximation by regular shapes fitting and moments-based technique. Infrared Brightness Temperature (BT) data from the Kalpana-1 satellite is used for the study. In the first technique, different shapes, such as rectangles, ellipses, and inner circles are fitted. In the second technique, spatial moments of the contours are used to get the center of the clouds. The accuracy obtained by an inner circle fitting, ellipse, and rectangle is 80, 91 and 92% respectively. The accuracy obtained by spatial moments of the contours is 94%. Performance comparison of the results showed that spatial moments of the contours outperformed shape-fitting techniques for the detection of cloud location.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat D. Chen, J. Guo, D. Yao, Y. Lin, C. Zhao, M. Min et al., Mesoscale convective systems in the Asian monsoon region from Advanced Himawari Imager: Algorithms and preliminary results. J. Geophys. Res.: Atmos. 124, 2210–2234 (2019)CrossRef D. Chen, J. Guo, D. Yao, Y. Lin, C. Zhao, M. Min et al., Mesoscale convective systems in the Asian monsoon region from Advanced Himawari Imager: Algorithms and preliminary results. J. Geophys. Res.: Atmos. 124, 2210–2234 (2019)CrossRef
Zurück zum Zitat J.-B. Courbot, V. Duval, B. Legras, Sparse analysis for mesoscale convective systems tracking. Signal Process.: Image Commun. 85, 115854 (2020) J.-B. Courbot, V. Duval, B. Legras, Sparse analysis for mesoscale convective systems tracking. Signal Process.: Image Commun. 85, 115854 (2020)
Zurück zum Zitat Z. Feng, L.R. Leung, R.A. Houze, S. Hagos, J. Hardin, Q. Yang, B. Han, J. Fan, Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst. 10(7), 1470–1494 (2018)CrossRef Z. Feng, L.R. Leung, R.A. Houze, S. Hagos, J. Hardin, Q. Yang, B. Han, J. Fan, Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst. 10(7), 1470–1494 (2018)CrossRef
Zurück zum Zitat T. Fiolleau, R. Roca, An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote Sens. 51(7), 4302–4315 (2013)CrossRef T. Fiolleau, R. Roca, An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote Sens. 51(7), 4302–4315 (2013)CrossRef
Zurück zum Zitat B. Goswami, G. Bhandari, Convective cloud detection and tracking from series of infrared images. J. Indian Soc. Remote. Sens. 41, 291–299 (2013)CrossRef B. Goswami, G. Bhandari, Convective cloud detection and tracking from series of infrared images. J. Indian Soc. Remote. Sens. 41, 291–299 (2013)CrossRef
Zurück zum Zitat B. Goswami, G. Bhandari, S. Goswami: Mesoscale convective system tracking in satellite thermal infrared images, in Annual IEEE India Conference (INDICON), Pune, India, pp. 11–13, IEEE (2014) B. Goswami, G. Bhandari, S. Goswami: Mesoscale convective system tracking in satellite thermal infrared images, in Annual IEEE India Conference (INDICON), Pune, India, pp. 11–13, IEEE (2014)
Zurück zum Zitat R. A. Houze Jr., Mesoscale convective systems. Rev. Geophys. 42(4), RG4003–1–RG4003–43 (2004) R. A. Houze Jr., Mesoscale convective systems. Rev. Geophys. 42(4), RG4003–1–RG4003–43 (2004)
Zurück zum Zitat R. A. Houze Jr., 100 years of research on mesoscale convective systems. Meteorol. Monogr. 59(1), 17.1–17.54 (2018) R. A. Houze Jr., 100 years of research on mesoscale convective systems. Meteorol. Monogr. 59(1), 17.1–17.54 (2018)
Zurück zum Zitat X. Huang, C. Hu, Xing Huang, Y. Chu, Y. Tseng, G. J. Zhang, Y. Lin, A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm. Clim. Dyn. 51, 3145–3159 (2018) X. Huang, C. Hu, Xing Huang, Y. Chu, Y. Tseng, G. J. Zhang, Y. Lin, A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm. Clim. Dyn. 51, 3145–3159 (2018)
Zurück zum Zitat C. Klein, D. Belušić, C.M. Taylor, Wavelet scale analysis of mesoscale convective systems for detecting deep convection from infrared imagery. J. Geophys. Res. Atmos. 123(6), 3035–3050 (2018)CrossRef C. Klein, D. Belušić, C.M. Taylor, Wavelet scale analysis of mesoscale convective systems for detecting deep convection from infrared imagery. J. Geophys. Res. Atmos. 123(6), 3035–3050 (2018)CrossRef
Zurück zum Zitat A. Makris, C. Prieur, Bayesian Multiple-Hypothesis Tracking of Merging and Splitting Targets. IEEE Trans. Geosci. Remote Sens. 52(12), 7684–7694 (2014)CrossRef A. Makris, C. Prieur, Bayesian Multiple-Hypothesis Tracking of Merging and Splitting Targets. IEEE Trans. Geosci. Remote Sens. 52(12), 7684–7694 (2014)CrossRef
Zurück zum Zitat S. Rafati, M. Karimi, Assessment of mesoscale convective systems using IR brightness temperature in the southwest of Iran. Theoret. Appl. Climatol. 129, 539–549 (2017)CrossRef S. Rafati, M. Karimi, Assessment of mesoscale convective systems using IR brightness temperature in the southwest of Iran. Theoret. Appl. Climatol. 129, 539–549 (2017)CrossRef
Zurück zum Zitat A. Rehbein, T. Ambrizzi, C. R. Mechoso: Mesoscale convective systems over the Amazon basin. Part I: climatological aspects. Int. J. Climatol. 38(1), 215–229 (2018) A. Rehbein, T. Ambrizzi, C. R. Mechoso: Mesoscale convective systems over the Amazon basin. Part I: climatological aspects. Int. J. Climatol. 38(1), 215–229 (2018)
Zurück zum Zitat R.S. Schumacher, K.L. Rasmussen, The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth & Environ. 1, 300–314 (2020)CrossRef R.S. Schumacher, K.L. Rasmussen, The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth & Environ. 1, 300–314 (2020)CrossRef
Zurück zum Zitat D.A. Vila, L.A.T. Machado, H. Laurent, I. Velasco, Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Weather Forecast. 23(2), 233–245 (2008)CrossRef D.A. Vila, L.A.T. Machado, H. Laurent, I. Velasco, Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Weather Forecast. 23(2), 233–245 (2008)CrossRef
Zurück zum Zitat K. Whitehall, C.A. Mattmann, G. Jenkins, M. Rwebangira, B. Demoz, D. Waliser, J. Kim, C. Goodale, A. Hart, P. Ramirez, M.J. Joyce, M. Boustani, P. Zimdars, P. Loikith, H. Lee, Exploring a graph theory based algorithm for automated identification and characterization of large mesoscale convective systems in satellite datasets. Earth Sci. Inf. 8, 663–675 (2015)CrossRef K. Whitehall, C.A. Mattmann, G. Jenkins, M. Rwebangira, B. Demoz, D. Waliser, J. Kim, C. Goodale, A. Hart, P. Ramirez, M.J. Joyce, M. Boustani, P. Zimdars, P. Loikith, H. Lee, Exploring a graph theory based algorithm for automated identification and characterization of large mesoscale convective systems in satellite datasets. Earth Sci. Inf. 8, 663–675 (2015)CrossRef
Metadaten
Titel
Performance Comparison of Shape Fitting and Moments-Based Techniques for Detection of Convective Cloud Location
verfasst von
Vidya B. Patil
Anuradha C. Phadke
Subrata Kumar Das
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-68038-0_14