Skip to main content
Erschienen in:

01.07.2024 | Original Paper

Performance enhancement of EV charging stations and distribution system: a GJO–APCNN technique

verfasst von: B. Gunapriya, B. Santosh Kumar, B. Rajalakshmi, A. Amarendra

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes an efficient energy management between the distribution system and electric vehicle charging system with a hybrid technique. The novelty lies in the joint execution of Golden Jackal Optimization (GJO) and Attention Pyramid Convolutional Neural Network (APCNN). This leverages the strengths of both techniques. GJO provides a good initial solution, while APCNN refines it with its data-driven learning capabilities. This technique analyzes system data and grid conditions to find an optimal control signal for the inverter which improves performance and results in reduced system cost. The primary goal of the proposed method is to improve the performance of the charging station and the distribution grid while reducing the overall system cost. The GJO method is utilized to optimize the control signal of the inverter. Develop a model that translates the control signal for the inverter into a format compatible with the GJO algorithm. The charging station is then provided with intelligent control and decision-making abilities through the application of the APCNN approach. After that, the proposed framework is implemented into practice using the MATLAB platform, and its results are compared to those of the current approaches. The proposed method shows better results compared to existing methods like Latent Semantic Analysis, Fertile Field Algorithm, and Salp Swarm Algorithm. From the result, it is concluded that the proposed technique reduces system cost more than the existing techniques. The 95% attained efficiency indicates a significant performance improvement with the proposed strategy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Singh A, Letha SS (2019) Emerging energy sources for electric vehicle charging station. Environ Dev Sustain 21:2043–2082CrossRefMATH Singh A, Letha SS (2019) Emerging energy sources for electric vehicle charging station. Environ Dev Sustain 21:2043–2082CrossRefMATH
2.
Zurück zum Zitat Savio DA, Juliet VA, Chokkalingam B, Padmanaban S, Holm-Nielsen JB, Blaabjerg F (2019) Photovoltaic integrated hybrid microgrid structured electric vehicle charging station and its energy management approach. Energies 12(1):168CrossRef Savio DA, Juliet VA, Chokkalingam B, Padmanaban S, Holm-Nielsen JB, Blaabjerg F (2019) Photovoltaic integrated hybrid microgrid structured electric vehicle charging station and its energy management approach. Energies 12(1):168CrossRef
3.
Zurück zum Zitat Torreglosa JP, García-Triviño P, Fernández-Ramirez LM, Jurado F (2016) Decentralized energy management strategy based on predictive controllers for a medium voltage direct current photovoltaic electric vehicle charging station. Energy Convers Manage 108:1–13CrossRef Torreglosa JP, García-Triviño P, Fernández-Ramirez LM, Jurado F (2016) Decentralized energy management strategy based on predictive controllers for a medium voltage direct current photovoltaic electric vehicle charging station. Energy Convers Manage 108:1–13CrossRef
4.
Zurück zum Zitat Suganya S, Charles Raja S, Venkatesh P (2017) Smart management of distinct plug-in hybrid electric vehicle charging stations considering mobility pattern and site characteristics. Int J Energy Res 41(14):2268–2281CrossRefMATH Suganya S, Charles Raja S, Venkatesh P (2017) Smart management of distinct plug-in hybrid electric vehicle charging stations considering mobility pattern and site characteristics. Int J Energy Res 41(14):2268–2281CrossRefMATH
5.
Zurück zum Zitat Hosseini S, Sarder MD (2019) Development of a Bayesian network model for optimal site selection of electric vehicle charging station. Int J Electr Power Energy Syst 105:110–122CrossRefMATH Hosseini S, Sarder MD (2019) Development of a Bayesian network model for optimal site selection of electric vehicle charging station. Int J Electr Power Energy Syst 105:110–122CrossRefMATH
6.
Zurück zum Zitat Hu Y, Su S, He L, Wu X, Ma T, Liu Z, Wei X (2019) A real-time multilevel energy management strategy for electric vehicle charging in a smart electric energy distribution system. Energ Technol 7(5):1800705CrossRef Hu Y, Su S, He L, Wu X, Ma T, Liu Z, Wei X (2019) A real-time multilevel energy management strategy for electric vehicle charging in a smart electric energy distribution system. Energ Technol 7(5):1800705CrossRef
7.
Zurück zum Zitat Mehrjerdi H, Hemmati R (2020) Stochastic model for electric vehicle charging station integrated with wind energy. Sust Energy Technol Assess 37:100577MATH Mehrjerdi H, Hemmati R (2020) Stochastic model for electric vehicle charging station integrated with wind energy. Sust Energy Technol Assess 37:100577MATH
8.
Zurück zum Zitat Boglou V, Karavas CS, Arvanitis K, Karlis A (2020) A fuzzy energy management strategy for the coordination of electric vehicle charging in low voltage distribution grids. Energies 13(14):3709CrossRef Boglou V, Karavas CS, Arvanitis K, Karlis A (2020) A fuzzy energy management strategy for the coordination of electric vehicle charging in low voltage distribution grids. Energies 13(14):3709CrossRef
9.
Zurück zum Zitat Rivera S, Wu B (2016) Electric vehicle charging station with an energy storage stage for split-DC bus voltage balancing. IEEE Trans Power Electron 32(3):2376–2386CrossRefMATH Rivera S, Wu B (2016) Electric vehicle charging station with an energy storage stage for split-DC bus voltage balancing. IEEE Trans Power Electron 32(3):2376–2386CrossRefMATH
10.
Zurück zum Zitat Khan W, Ahmad F, Alam MS (2019) Fast EV charging station integration with grid ensuring optimal and quality power exchange. Eng Sci Technol Int J 22(1):143–152MATH Khan W, Ahmad F, Alam MS (2019) Fast EV charging station integration with grid ensuring optimal and quality power exchange. Eng Sci Technol Int J 22(1):143–152MATH
11.
Zurück zum Zitat Shojaabadi S, Abapour S, Abapour M, Nahavandi A (2016) Optimal planning of plug-in hybrid electric vehicle charging station in distribution network considering demand response programs and uncertainties. IET Gener Transm Distrib 10(13):3330–3340CrossRefMATH Shojaabadi S, Abapour S, Abapour M, Nahavandi A (2016) Optimal planning of plug-in hybrid electric vehicle charging station in distribution network considering demand response programs and uncertainties. IET Gener Transm Distrib 10(13):3330–3340CrossRefMATH
12.
Zurück zum Zitat Khan A, Memon S, Sattar TP (2018) Analyzing integrated renewable energy and smart-grid systems to improve voltage quality and harmonic distortion losses at electric-vehicle charging stations. IEEE Access 6:26404–26415CrossRefMATH Khan A, Memon S, Sattar TP (2018) Analyzing integrated renewable energy and smart-grid systems to improve voltage quality and harmonic distortion losses at electric-vehicle charging stations. IEEE Access 6:26404–26415CrossRefMATH
13.
Zurück zum Zitat Wu F, Sioshansi R (2017) A two-stage stochastic optimization model for scheduling electric vehicle charging loads to relieve distribution-system constraints. Trans Res Part B Methodol 102:55–82CrossRefMATH Wu F, Sioshansi R (2017) A two-stage stochastic optimization model for scheduling electric vehicle charging loads to relieve distribution-system constraints. Trans Res Part B Methodol 102:55–82CrossRefMATH
14.
Zurück zum Zitat Wu X, Hu X, Moura S, Yin X, Pickert V (2016) Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array. J Power Sources 333:203–212CrossRefMATH Wu X, Hu X, Moura S, Yin X, Pickert V (2016) Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array. J Power Sources 333:203–212CrossRefMATH
15.
Zurück zum Zitat Hannan MA, Hoque MM, Hussain A, Yusof Y, Ker PJ (2018) State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. Ieee Access 6:19362–19378CrossRef Hannan MA, Hoque MM, Hussain A, Yusof Y, Ker PJ (2018) State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. Ieee Access 6:19362–19378CrossRef
16.
Zurück zum Zitat Ji Z, Huang X, Xu C, Sun H (2016) Accelerated model predictive control for electric vehicle integrated microgrid energy management: a hybrid robust and stochastic approach. Energies 9(11):973CrossRefMATH Ji Z, Huang X, Xu C, Sun H (2016) Accelerated model predictive control for electric vehicle integrated microgrid energy management: a hybrid robust and stochastic approach. Energies 9(11):973CrossRefMATH
17.
Zurück zum Zitat Liu Y, Li Y, Gooi HB, Jian Y, Xin H, Jiang X, Pan J (2017) Distributed robust energy management of a multimicrogrid system in the real-time energy market. IEEE Trans Sust Energy 10(1):396–406CrossRef Liu Y, Li Y, Gooi HB, Jian Y, Xin H, Jiang X, Pan J (2017) Distributed robust energy management of a multimicrogrid system in the real-time energy market. IEEE Trans Sust Energy 10(1):396–406CrossRef
18.
Zurück zum Zitat Abbasi MH, Taki M, Rajabi A, Li L, Zhang J (2019) Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: a multi-stage risk constrained approach. Appl Energy 239:1294–1307CrossRefMATH Abbasi MH, Taki M, Rajabi A, Li L, Zhang J (2019) Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: a multi-stage risk constrained approach. Appl Energy 239:1294–1307CrossRefMATH
19.
Zurück zum Zitat Ebrahimi J, Abedini M, Rezaei MM, Nasri M (2020) Optimum design of a multi-form energy in the presence of electric vehicle charging station and renewable resources considering uncertainty. Sust Energy Grids Netw 23:100375CrossRefMATH Ebrahimi J, Abedini M, Rezaei MM, Nasri M (2020) Optimum design of a multi-form energy in the presence of electric vehicle charging station and renewable resources considering uncertainty. Sust Energy Grids Netw 23:100375CrossRefMATH
20.
Zurück zum Zitat Zenginis I, Vardakas JS, Zorba N, Verikoukis CV (2016) Analysis and quality of service evaluation of a fast charging station for electric vehicles. Energy 112:669–678CrossRef Zenginis I, Vardakas JS, Zorba N, Verikoukis CV (2016) Analysis and quality of service evaluation of a fast charging station for electric vehicles. Energy 112:669–678CrossRef
21.
Zurück zum Zitat Li Y, Ni Z, Zhao T, Zhong T, Liu Y, Wu L, Zhao Y (2020) Supply function game based energy management between electric vehicle charging stations and electricity distribution system considering quality of service. IEEE Trans Ind Appl 56(5):5932–5943CrossRefMATH Li Y, Ni Z, Zhao T, Zhong T, Liu Y, Wu L, Zhao Y (2020) Supply function game based energy management between electric vehicle charging stations and electricity distribution system considering quality of service. IEEE Trans Ind Appl 56(5):5932–5943CrossRefMATH
22.
Zurück zum Zitat Wang D, Locment F, Sechilariu M (2020) Modelling, simulation, and management strategy of an electric vehicle charging station based on a DC microgrid. Appl Sci 10(6):2053CrossRefMATH Wang D, Locment F, Sechilariu M (2020) Modelling, simulation, and management strategy of an electric vehicle charging station based on a DC microgrid. Appl Sci 10(6):2053CrossRefMATH
23.
Zurück zum Zitat Mumtaz S, Ali S, Ahmad S, Khan L, Hassan SZ, Kamal T (2017) Energy management and control of plug-in hybrid electric vehicle charging stations in a grid connected hybrid power system. Energies 10(11):1923CrossRefMATH Mumtaz S, Ali S, Ahmad S, Khan L, Hassan SZ, Kamal T (2017) Energy management and control of plug-in hybrid electric vehicle charging stations in a grid connected hybrid power system. Energies 10(11):1923CrossRefMATH
24.
Zurück zum Zitat Tan B, Chen H (2020) Multi-objective energy management of multiple microgrids under random electric vehicle charging. Energy 208:118360CrossRef Tan B, Chen H (2020) Multi-objective energy management of multiple microgrids under random electric vehicle charging. Energy 208:118360CrossRef
25.
Zurück zum Zitat Kikusato H, Mori K, Yoshizawa S, Fujimoto Y, Asano H, Hayashi Y, …& Suzuki, T. (2018) Electric vehicle charge–discharge management for utilization of photovoltaic by coordination between home and grid energy management systems. IEEE Trans Smart Grid 10(3):3186–3197CrossRef Kikusato H, Mori K, Yoshizawa S, Fujimoto Y, Asano H, Hayashi Y, …& Suzuki, T. (2018) Electric vehicle charge–discharge management for utilization of photovoltaic by coordination between home and grid energy management systems. IEEE Trans Smart Grid 10(3):3186–3197CrossRef
26.
Zurück zum Zitat Mehrabi A, Nunna HK, Dadlani A, Moon S, Kim K (2020) Decentralized greedy-based algorithm for smart energy management in plug-in electric vehicle energy distribution systems. IEEE Access 8:75666–75681CrossRef Mehrabi A, Nunna HK, Dadlani A, Moon S, Kim K (2020) Decentralized greedy-based algorithm for smart energy management in plug-in electric vehicle energy distribution systems. IEEE Access 8:75666–75681CrossRef
27.
Zurück zum Zitat Pflaum P, Alamir M, Lamoudi MY (2017) Probabilistic energy management strategy for EV charging stations using randomized algorithms. IEEE Trans Control Syst Technol 26(3):1099–1106CrossRefMATH Pflaum P, Alamir M, Lamoudi MY (2017) Probabilistic energy management strategy for EV charging stations using randomized algorithms. IEEE Trans Control Syst Technol 26(3):1099–1106CrossRefMATH
28.
29.
Zurück zum Zitat Elkasem AH, Khamies M, Hassan MH, Nasrat L, Kamel S (2023) Utilizing controlled plug-in electric vehicles to improve hybrid power grid frequency regulation considering high renewable energy penetration. Int J Electr Power Energy Syst 152:109251CrossRef Elkasem AH, Khamies M, Hassan MH, Nasrat L, Kamel S (2023) Utilizing controlled plug-in electric vehicles to improve hybrid power grid frequency regulation considering high renewable energy penetration. Int J Electr Power Energy Syst 152:109251CrossRef
30.
Zurück zum Zitat Elma O (2020) A dynamic charging strategy with hybrid fast charging station for electric vehicles. Energy 202:117680CrossRefMATH Elma O (2020) A dynamic charging strategy with hybrid fast charging station for electric vehicles. Energy 202:117680CrossRefMATH
31.
Zurück zum Zitat Manyonge AW, Ochieng RM, Onyango FN, Shichikha JM (2012) Mathematical modelling of wind turbine in a wind energy conversion system: power coefficient analysis. Appl Math Sci 6:4527–4536MATH Manyonge AW, Ochieng RM, Onyango FN, Shichikha JM (2012) Mathematical modelling of wind turbine in a wind energy conversion system: power coefficient analysis. Appl Math Sci 6:4527–4536MATH
32.
Zurück zum Zitat Deb S, Tammi K, Kalita K, Mahanta P (2018) Impact of electric vehicle charging station load on distribution network. Energies 11(1):178CrossRefMATH Deb S, Tammi K, Kalita K, Mahanta P (2018) Impact of electric vehicle charging station load on distribution network. Energies 11(1):178CrossRefMATH
33.
Zurück zum Zitat Nanda Kumar S, Mohanty NK (2022) Modified Golden Jackal Optimization assisted adaptive fuzzy PIDF controller for virtual inertia control of micro grid with renewable energy. Symmetry 14(9):1946CrossRefMATH Nanda Kumar S, Mohanty NK (2022) Modified Golden Jackal Optimization assisted adaptive fuzzy PIDF controller for virtual inertia control of micro grid with renewable energy. Symmetry 14(9):1946CrossRefMATH
34.
Zurück zum Zitat Archana AN, Rajeev T (2021) A novel reliability index based approach for EV charging station allocation in distribution system. IEEE Trans Ind Appl 57(6):6385–6394CrossRefMATH Archana AN, Rajeev T (2021) A novel reliability index based approach for EV charging station allocation in distribution system. IEEE Trans Ind Appl 57(6):6385–6394CrossRefMATH
35.
Zurück zum Zitat Yang F, Xie Y, Deng Y, Yuan C (2018) Predictive modeling of battery degradation and greenhouse gas emissions from US state-level electric vehicle operation. Nat Commun 9(1):2429CrossRefMATH Yang F, Xie Y, Deng Y, Yuan C (2018) Predictive modeling of battery degradation and greenhouse gas emissions from US state-level electric vehicle operation. Nat Commun 9(1):2429CrossRefMATH
36.
Zurück zum Zitat Venkatakrishnan GR, Rengaraj R, Prakash NB (2022) Optimally manage the energy between electric vehicle charging stations and electricity distribution system: a hybrid technique. Int J Numer Model Electron Netw Devices Fields 35(1):e2944CrossRef Venkatakrishnan GR, Rengaraj R, Prakash NB (2022) Optimally manage the energy between electric vehicle charging stations and electricity distribution system: a hybrid technique. Int J Numer Model Electron Netw Devices Fields 35(1):e2944CrossRef
37.
Zurück zum Zitat Rezaie M, Akbari E, Ghadimi N, Razmjooy N, Ghadamyari M (2022) Model parameters estimation of the proton exchange membrane fuel cell by a Modified Golden Jackal Optimization. Sust Energy Technol Assess 53:102657 Rezaie M, Akbari E, Ghadimi N, Razmjooy N, Ghadamyari M (2022) Model parameters estimation of the proton exchange membrane fuel cell by a Modified Golden Jackal Optimization. Sust Energy Technol Assess 53:102657
38.
Zurück zum Zitat Ding Y, Ma Z, Wen S, Xie J, Chang D, Si Z, Ling H (2021) AP-CNN: weakly supervised attention pyramid convolutional neural network for fine-grained visual classification. IEEE Trans Image Process 30:2826–2836CrossRefMATH Ding Y, Ma Z, Wen S, Xie J, Chang D, Si Z, Ling H (2021) AP-CNN: weakly supervised attention pyramid convolutional neural network for fine-grained visual classification. IEEE Trans Image Process 30:2826–2836CrossRefMATH
39.
Zurück zum Zitat Wang Y, Wang X, Shao C, Gong N (2020) Distributed energy trading for an integrated energy system and electric vehicle charging stations: a Nash bargaining game approach. Renew Energy 155:513–530CrossRefMATH Wang Y, Wang X, Shao C, Gong N (2020) Distributed energy trading for an integrated energy system and electric vehicle charging stations: a Nash bargaining game approach. Renew Energy 155:513–530CrossRefMATH
Metadaten
Titel
Performance enhancement of EV charging stations and distribution system: a GJO–APCNN technique
verfasst von
B. Gunapriya
B. Santosh Kumar
B. Rajalakshmi
A. Amarendra
Publikationsdatum
01.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02531-4