Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 6/2018

12.12.2017

Performance enhancement of quantum dot sensitized solar cells by treatment of ZnO nanorods by magnesium acetate

verfasst von: Mohammad Javad Fahimi, Mehdi Eskandari, Davood Fathi

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the performance of Quantum dot-sensitized solar cells (QDSSCs) is enhanced with the treatment of ZnO nanorods by magnesium acetate. A chemical solution method is used for decoration of magnesium acetate on the ZnO nanorods. Current density–voltage (J-V) results show short-circuit current density (J sc ), open circuit voltage (V oc ), and power conversion efficiency (PCE) are enhanced by treatment of the photoanode with magnesium acetate from 13.76 to 15.47 mAcm−2, 557 to 668 mV, and 2.64 to 5.47%, respectively. This performance improvement of the cell is attributed to the reduction of the surface density of defects at ZnO surface and consequently decreasing recombination of the photoelectrons with surface defects at ZnO surface with the treatment of ZnO nanorods by magnesium acetate. Electrochemical impedance spectroscopy (EIS) results indicate recombination resistance is increased with decoration magnesium acetate on the ZnO nanorods, which is caused fill factor (FF) raises from 0.35 to 0.53. Also, electron lifetime at the photoanode/electrolyte interface is improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Nozik, Quantum dot solar cells. Phys. E: Low-Dimension. Syst. Nanostruct. 14 (2002) 115–120CrossRef A. Nozik, Quantum dot solar cells. Phys. E: Low-Dimension. Syst. Nanostruct. 14 (2002) 115–120CrossRef
2.
Zurück zum Zitat S. Rühle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)CrossRef S. Rühle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)CrossRef
3.
Zurück zum Zitat P.V. Kamat, Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 4, 908–918 (2013)CrossRef P.V. Kamat, Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 4, 908–918 (2013)CrossRef
4.
Zurück zum Zitat P.V. Kamat, J.A. Christians, J.G. Radich, Quantum dot solar cells: hole transfer as a limiting factor in boosting the photo conversion efficiency. Langmuir 30 (2014) 5716–5725CrossRef P.V. Kamat, J.A. Christians, J.G. Radich, Quantum dot solar cells: hole transfer as a limiting factor in boosting the photo conversion efficiency. Langmuir 30 (2014) 5716–5725CrossRef
5.
Zurück zum Zitat H.K. Jun, M.A. Careem, A.K. Arof, Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew. Sustain. Energy Rev. 22, 148–167 (2013)CrossRef H.K. Jun, M.A. Careem, A.K. Arof, Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew. Sustain. Energy Rev. 22, 148–167 (2013)CrossRef
6.
Zurück zum Zitat F. Deng, X. Mei, X. Wan, R. Fan, Q. Wu, X. Yan, L. Wan, D. Shi, Y. Xiong, Efficiency improvement of quantum dot sensitized solar cells with inserting ZnS layer in the photo anode. J. Mater. Sci: Mater. Electron. 1–4 (2015) F. Deng, X. Mei, X. Wan, R. Fan, Q. Wu, X. Yan, L. Wan, D. Shi, Y. Xiong, Efficiency improvement of quantum dot sensitized solar cells with inserting ZnS layer in the photo anode. J. Mater. Sci: Mater. Electron. 1–4 (2015)
7.
Zurück zum Zitat Y.-L. Lee, Y.-S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)CrossRef Y.-L. Lee, Y.-S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)CrossRef
8.
Zurück zum Zitat Z. Pan, I.n.. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, J. Bisquert, High-efficiency “green” quantum dot solar cells. J. Am. Chem. Soc. 136, 9203–9210 (2014)CrossRef Z. Pan, I.n.. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, J. Bisquert, High-efficiency “green” quantum dot solar cells. J. Am. Chem. Soc. 136, 9203–9210 (2014)CrossRef
9.
Zurück zum Zitat G. Sixto, M.-S. Iván, M. Lorena, G. Nestor, L.-V. Teresa, G. Roberto, J.D. Lina, S. Qing, T. Taro, B. Juan, Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 20, 295204 (2009)CrossRef G. Sixto, M.-S. Iván, M. Lorena, G. Nestor, L.-V. Teresa, G. Roberto, J.D. Lina, S. Qing, T. Taro, B. Juan, Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 20, 295204 (2009)CrossRef
10.
Zurück zum Zitat K. Tvrdy, Electron Transfer Reactions in Quantum Dot Sensitized Solar Cells, University of Notre Dame, 2011 K. Tvrdy, Electron Transfer Reactions in Quantum Dot Sensitized Solar Cells, University of Notre Dame, 2011
11.
Zurück zum Zitat M. Eskandari, V. Ahmadi, Treatment effects of ZnO and Al:ZnO photoanodes on short-circuit photocurrent and open-circuit photo voltage of quantum dot sensitized solar cell using Ag nanoparticles. Electrochim. Acta 165, 239–246 (2015)CrossRef M. Eskandari, V. Ahmadi, Treatment effects of ZnO and Al:ZnO photoanodes on short-circuit photocurrent and open-circuit photo voltage of quantum dot sensitized solar cell using Ag nanoparticles. Electrochim. Acta 165, 239–246 (2015)CrossRef
12.
Zurück zum Zitat M. Eskandari, R. Ghahary, M. Shokri, V. Ahmadi, Zinc oxide/copper sulfide nanorods as a highly catalytic counter electrode material for quantum dot sensitized solar cells. RSC Adv. 6, 51894–51899 (2016)CrossRef M. Eskandari, R. Ghahary, M. Shokri, V. Ahmadi, Zinc oxide/copper sulfide nanorods as a highly catalytic counter electrode material for quantum dot sensitized solar cells. RSC Adv. 6, 51894–51899 (2016)CrossRef
13.
Zurück zum Zitat A.B.F. Vitoreti, L.B. Corrêa, E. Raphael, A.O.T. Patrocinio, A.F. Nogueira, M.A. Schiavon, Quantum dot-sensitized solar cells. Quim. Nova. 40(2017) 436–446 A.B.F. Vitoreti, L.B. Corrêa, E. Raphael, A.O.T. Patrocinio, A.F. Nogueira, M.A. Schiavon, Quantum dot-sensitized solar cells. Quim. Nova. 40(2017) 436–446
14.
Zurück zum Zitat M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu, C. Lin, Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustain. Energy Fuels (2017) M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu, C. Lin, Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustain. Energy Fuels (2017)
15.
Zurück zum Zitat I.A. Rauf, P. Rezai, A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: a simplified approach to reviewing literature data. Renew. Sustain. Energy Rev. 73, 408–422 (2017)CrossRef I.A. Rauf, P. Rezai, A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: a simplified approach to reviewing literature data. Renew. Sustain. Energy Rev. 73, 408–422 (2017)CrossRef
16.
Zurück zum Zitat A.W. Blakers, A. Wang, A.M. Milne, J. Zhao, M.A. Green, 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363–1365 (1989)CrossRef A.W. Blakers, A. Wang, A.M. Milne, J. Zhao, M.A. Green, 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363–1365 (1989)CrossRef
17.
Zurück zum Zitat M.A. Green, The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovoltaics Res. Appl. 17, 183–189 (2009)CrossRef M.A. Green, The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovoltaics Res. Appl. 17, 183–189 (2009)CrossRef
18.
Zurück zum Zitat D. Bi, B. Xu, P. Gao, L. Sun, M. Grätzel, A. Hagfeldt, Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy (2016) D. Bi, B. Xu, P. Gao, L. Sun, M. Grätzel, A. Hagfeldt, Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy (2016)
19.
Zurück zum Zitat J. Chang, H. Zhu, B. Li, F.H. Isikgor, Y. Hao, Q. Xu, J. Ouyang, Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. J. Mater. Chem. A 4, 887–893 (2016)CrossRef J. Chang, H. Zhu, B. Li, F.H. Isikgor, Y. Hao, Q. Xu, J. Ouyang, Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. J. Mater. Chem. A 4, 887–893 (2016)CrossRef
20.
Zurück zum Zitat H. Hiroi, Y. Iwata, S. Adachi, H. Sugimoto, A. Yamada, New world-record efficiency for pure-sulfide Cu (In, Ga) S thin-film solar cell with Cd-Free buffer layer via KCN-free process. IEEE J. Photovoltaics (2016) H. Hiroi, Y. Iwata, S. Adachi, H. Sugimoto, A. Yamada, New world-record efficiency for pure-sulfide Cu (In, Ga) S thin-film solar cell with Cd-Free buffer layer via KCN-free process. IEEE J. Photovoltaics (2016)
21.
Zurück zum Zitat P. Parand, M. Samadpour, A. Esfandiar, A. Iraji Zad, Graphene/PbS as a novel counter electrode for quantum dot sensitized solar cells. Acs Photonics 1, 323–330 (2014)CrossRef P. Parand, M. Samadpour, A. Esfandiar, A. Iraji Zad, Graphene/PbS as a novel counter electrode for quantum dot sensitized solar cells. Acs Photonics 1, 323–330 (2014)CrossRef
22.
Zurück zum Zitat N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim. Acta 91, 246–252 (2013)CrossRef N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim. Acta 91, 246–252 (2013)CrossRef
23.
Zurück zum Zitat M. Eskandari, V. Ahmadi, R. Ghahary, Copper sulfide/lead sulfide as a highly catalytic counter electrode for zinc oxide nanorod based quantum dot solar cells. Electrochim. Acta 151, 393–398 (2015)CrossRef M. Eskandari, V. Ahmadi, R. Ghahary, Copper sulfide/lead sulfide as a highly catalytic counter electrode for zinc oxide nanorod based quantum dot solar cells. Electrochim. Acta 151, 393–398 (2015)CrossRef
24.
Zurück zum Zitat M. Eskandari, V. Ahmadi, Copper selenide as a new counter electrode for zinc oxide nanorod based quantum dot solar cells. Mater. Lett 142, 308–311 (2015)CrossRef M. Eskandari, V. Ahmadi, Copper selenide as a new counter electrode for zinc oxide nanorod based quantum dot solar cells. Mater. Lett 142, 308–311 (2015)CrossRef
25.
Zurück zum Zitat H.-J. Kim, D.-J. Kim, S.S. Rao, A.D. Savariraj, K. Soo-Kyoung, M.-K. Son, C.V. Gopi, K. Prabakar, Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells. Electrochim. Acta 127, 427–432 (2014)CrossRef H.-J. Kim, D.-J. Kim, S.S. Rao, A.D. Savariraj, K. Soo-Kyoung, M.-K. Son, C.V. Gopi, K. Prabakar, Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells. Electrochim. Acta 127, 427–432 (2014)CrossRef
26.
Zurück zum Zitat L. Quan, W. Li, L. Zhu, H. Geng, X. Chang, H. Liu, A new in-situ preparation method to FeS counter electrode for quantum dots-sensitized solar cells. J. Power Sour. 272, 546–553 (2014)CrossRef L. Quan, W. Li, L. Zhu, H. Geng, X. Chang, H. Liu, A new in-situ preparation method to FeS counter electrode for quantum dots-sensitized solar cells. J. Power Sour. 272, 546–553 (2014)CrossRef
27.
Zurück zum Zitat M. Liu, G. Li, X. Chen, One-pot controlled synthesis of spongelike CuInS2 microspheres for efficient counter electrode with graphene assistance in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6, 2604–2610 (2014)CrossRef M. Liu, G. Li, X. Chen, One-pot controlled synthesis of spongelike CuInS2 microspheres for efficient counter electrode with graphene assistance in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6, 2604–2610 (2014)CrossRef
28.
Zurück zum Zitat J. Yang, C. Bao, J. Zhang, T. Yu, H. Huang, Y. Wei, H. Gao, G. Fu, J. Liu, Z. Zou, In situ grown vertically oriented CuInS 2 nanosheets and their high catalytic activity as counter electrodes in dye-sensitized solar cells. Chem. Commun. 49, 2028–2030 (2013)CrossRef J. Yang, C. Bao, J. Zhang, T. Yu, H. Huang, Y. Wei, H. Gao, G. Fu, J. Liu, Z. Zou, In situ grown vertically oriented CuInS 2 nanosheets and their high catalytic activity as counter electrodes in dye-sensitized solar cells. Chem. Commun. 49, 2028–2030 (2013)CrossRef
29.
Zurück zum Zitat K.E. Roelofs, T.P. Brennan, J.C. Dominguez, C.D. Bailie, G.Y. Margulis, E.T. Hoke, M.D. McGehee, S.F. Bent, Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells. J. Phys. Chem. C 117, 5584–5592 (2013)CrossRef K.E. Roelofs, T.P. Brennan, J.C. Dominguez, C.D. Bailie, G.Y. Margulis, E.T. Hoke, M.D. McGehee, S.F. Bent, Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells. J. Phys. Chem. C 117, 5584–5592 (2013)CrossRef
30.
Zurück zum Zitat T.P. Brennan, O. Trejo, K.E. Roelofs, J. Xu, F.B. Prinz, S.F. Bent, Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer. J. Mater. Chem. A 1, 7566–7571 (2013)CrossRef T.P. Brennan, O. Trejo, K.E. Roelofs, J. Xu, F.B. Prinz, S.F. Bent, Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer. J. Mater. Chem. A 1, 7566–7571 (2013)CrossRef
31.
Zurück zum Zitat M. Javad Fahimi, D. Fathi, M. Ansari-Rad, Accurate analysis of electron transfer from quantum dots to metal oxides in quantum dot sensitized solar cells. Physica E: Low-dimensional Syst. Nanostruct. 73, 148–155 (2015) M. Javad Fahimi, D. Fathi, M. Ansari-Rad, Accurate analysis of electron transfer from quantum dots to metal oxides in quantum dot sensitized solar cells. Physica E: Low-dimensional Syst. Nanostruct. 73, 148–155 (2015)
32.
Zurück zum Zitat M.J. Fahimi, D. Fathi, H. Bastami, Blocking layer modeling for temperature analysis of electron transfer rate in quantum dot sensitized solar cells. J. Fund. Appl. Sci. 8(3), 54–70 (2016) M.J. Fahimi, D. Fathi, H. Bastami, Blocking layer modeling for temperature analysis of electron transfer rate in quantum dot sensitized solar cells. J. Fund. Appl. Sci. 8(3), 54–70 (2016)
33.
Zurück zum Zitat Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 084304 (2008)CrossRef Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 084304 (2008)CrossRef
34.
Zurück zum Zitat Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Sero, J. Bisquert, X. Zhong, Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chem. Mater. 27, 8398–8405 (2015)CrossRef Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Sero, J. Bisquert, X. Zhong, Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chem. Mater. 27, 8398–8405 (2015)CrossRef
35.
Zurück zum Zitat Z. Ren, Z. Wang, R. Wang, Z. Pan, X. Gong, X. Zhong, Effects of metal oxy hydroxide coatings on photo anode in quantum dot sensitized solar cells. Chem. Mater. (2016) Z. Ren, Z. Wang, R. Wang, Z. Pan, X. Gong, X. Zhong, Effects of metal oxy hydroxide coatings on photo anode in quantum dot sensitized solar cells. Chem. Mater. (2016)
36.
Zurück zum Zitat M. Eskandari, V. Ahmadi, S. Ahmadi, Growth of Al-doped ZnO nanorod arrays on the substrate at low temperature. Phys. E: Low-Dimension. Syst. Nanostruct. 42, 1683–1686 (2010)CrossRef M. Eskandari, V. Ahmadi, S. Ahmadi, Growth of Al-doped ZnO nanorod arrays on the substrate at low temperature. Phys. E: Low-Dimension. Syst. Nanostruct. 42, 1683–1686 (2010)CrossRef
37.
Zurück zum Zitat M. Eskandari, V. Ahmadi, R. Ghahary, Enhanced photovoltaic performance of a cadmium sulfide/cadmium selenide-sensitized solar cell using an aluminum-doped zinc oxide electrode. Ceram. Int. 41, 2373–2380 (2015)CrossRef M. Eskandari, V. Ahmadi, R. Ghahary, Enhanced photovoltaic performance of a cadmium sulfide/cadmium selenide-sensitized solar cell using an aluminum-doped zinc oxide electrode. Ceram. Int. 41, 2373–2380 (2015)CrossRef
38.
Zurück zum Zitat D. Hassouna, C. Hedia, T. Fathi, Mg(OH)2 nanorods synthesized by A facile hydrothermal method in the presence of CTAB. Nano-Micro Lett. 3, 153–159 (2011)CrossRef D. Hassouna, C. Hedia, T. Fathi, Mg(OH)2 nanorods synthesized by A facile hydrothermal method in the presence of CTAB. Nano-Micro Lett. 3, 153–159 (2011)CrossRef
39.
Zurück zum Zitat K. Guo, M. Li, X. Fang, X. Liu, B. Sebo, Y. Zhu, Z. Hu, X. Zhao, Preparation and enhanced properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanoparticles in nanocomposite photoanode. J. Power Sour. 230, 155–160 (2013)CrossRef K. Guo, M. Li, X. Fang, X. Liu, B. Sebo, Y. Zhu, Z. Hu, X. Zhao, Preparation and enhanced properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanoparticles in nanocomposite photoanode. J. Power Sour. 230, 155–160 (2013)CrossRef
41.
Zurück zum Zitat J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Giménez, Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J. Phys. Chem. C 113, 17278–17290 (2009)CrossRef J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Giménez, Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J. Phys. Chem. C 113, 17278–17290 (2009)CrossRef
41.
Zurück zum Zitat M. Eskandari, V. Ahmadi, S. Kohnehpoushi, Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nano particles as photo anode. Phys. E: Low-Dimension. Syst. Nanostruct. 68, 202–209 (2015)CrossRef M. Eskandari, V. Ahmadi, S. Kohnehpoushi, Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nano particles as photo anode. Phys. E: Low-Dimension. Syst. Nanostruct. 68, 202–209 (2015)CrossRef
42.
Zurück zum Zitat C.V.V.M. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale 7, 12552–12563 (2015)CrossRef C.V.V.M. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale 7, 12552–12563 (2015)CrossRef
43.
Zurück zum Zitat J. Zhao, P. Wang, L. Wei, Z. Liu, J. Zhang, H. Si, Y. Mai, X. Fang, X. Liu, D. Ren, Enhanced photocurrent by the co-sensitization of ZnO with dye and CuInSe nanocrystals. Dalton Trans. 44, 12516–12521 (2015)CrossRef J. Zhao, P. Wang, L. Wei, Z. Liu, J. Zhang, H. Si, Y. Mai, X. Fang, X. Liu, D. Ren, Enhanced photocurrent by the co-sensitization of ZnO with dye and CuInSe nanocrystals. Dalton Trans. 44, 12516–12521 (2015)CrossRef
Metadaten
Titel
Performance enhancement of quantum dot sensitized solar cells by treatment of ZnO nanorods by magnesium acetate
verfasst von
Mohammad Javad Fahimi
Mehdi Eskandari
Davood Fathi
Publikationsdatum
12.12.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 6/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-8407-z

Weitere Artikel der Ausgabe 6/2018

Journal of Materials Science: Materials in Electronics 6/2018 Zur Ausgabe

Neuer Inhalt