Skip to main content
Erschienen in:

31.03.2024 | Original Article

Performance evaluation of deep learning approaches for predicting mechanical fields in composites

verfasst von: Marwa Yacouti, Maryam Shakiba

Erschienen in: Engineering with Computers | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a rigorous and critical methodology for evaluating the performance of deep learning (DL) techniques in predicting mechanical responses within the microstructural representation of composites. In the past few years, deep learning has emerged as a powerful tool and an efficient surrogate for finite element analysis in computational mechanics. This research addresses questions regarding the suitability of common error metrics for evaluating the accuracy of DL techniques in predicting full-field mechanical responses of composites. Through comparative analysis, we evaluate the performance and identify the limitations of two DL frameworks in predicting the linear von Mises stress distribution within the microstructure of the selected fiber-reinforced composite. The first DL method is based on the residual network, while the second utilizes U-Net architecture. We use several evaluation metrics, including different types of error and statistical measures and examine their suitability. Additionally, this study also investigates the influence of the size of the training and validation dataset, ranging from 50 to 2000 samples, on the predictive performance of the employed ResNet and U-Net based approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
8.
Zurück zum Zitat Sepasdar R (2021) A deep learning approach to predict full-field stress distribution in composite materials. Thesis, Virginia Tech Sepasdar R (2021) A deep learning approach to predict full-field stress distribution in composite materials. Thesis, Virginia Tech
13.
19.
Zurück zum Zitat Hernández L, Sepasdar R, Shakiba M (2020) Sensitivity of crack formation in fiber-reinforced composites to microstructural geometry and interfacial properties. In: American society for composites, thirty-fifth technical conference Hernández L, Sepasdar R, Shakiba M (2020) Sensitivity of crack formation in fiber-reinforced composites to microstructural geometry and interfacial properties. In: American society for composites, thirty-fifth technical conference
20.
Zurück zum Zitat Ayachit U (2015) The ParaView guide: a parallel visualization application. Kitware Inc, Clifton Park Ayachit U (2015) The ParaView guide: a parallel visualization application. Kitware Inc, Clifton Park
Metadaten
Titel
Performance evaluation of deep learning approaches for predicting mechanical fields in composites
verfasst von
Marwa Yacouti
Maryam Shakiba
Publikationsdatum
31.03.2024
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 5/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-01966-4