Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.07.2019 | Research Paper | Ausgabe 1/2020 Open Access

Structural and Multidisciplinary Optimization 1/2020

Performance evaluation of metamodelling methods for engineering problems: towards a practitioner guide

Zeitschrift:
Structural and Multidisciplinary Optimization > Ausgabe 1/2020
Autoren:
Mohammed Reza Kianifar, Felician Campean
Wichtige Hinweise
Responsible Editor: KK Choi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Metamodelling or surrogate modelling techniques are frequently used across the engineering disciplines in conjunction with expensive simulation models or physical experiments. With the proliferation of metamodeling techniques developed to provide enhanced performance for specific problems, and the wide availability of a diverse choice of tools in engineering software packages, the engineering task of selecting a robust metamodeling technique for practical problems is still a challenge. This research introduces a framework for describing the typology of engineering problems, in terms of dimensionality and complexity, and the modelling conditions, reflecting the noisiness of the signals and the affordability of sample sizes, and on this basis presents a systematic evaluation of the performance of frequently used metamodeling techniques. A set of metamodeling techniques, selected based on their reported use for engineering problems (i.e. Polynomial, Radial Basis Function, and Kriging), were systematically evaluated in terms of accuracy and robustness against a carefully assembled set of 18 test functions covering different types of problems, sampling conditions and noise conditions. A set of four real-world engineering case studies covering both computer simulation and physical experiments were also analysed as validation tests for the proposed guidelines. The main conclusions drawn from the study are that Kriging model with Matérn 5/2 correlation function performs consistently well across different problem types with smooth (i.e. not noisy) data, while Kriging model with Matérn 3/2 correlation function provides robust performance under noisy conditions, except for the very high noise conditions, where the Kriging model with nugget appears to provide better models. These results provide engineering practitioners with a guide for the choice of a metamodeling technique for problem types and modelling conditions represented in the study, whereas the evaluation framework and benchmarking problems set will be useful for researchers conducting similar studies.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2020

Structural and Multidisciplinary Optimization 1/2020 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise