Skip to main content
Erschienen in: Meccanica 1/2021

03.01.2021

Performance improvement of low frequency piezoelectric energy harvester incorporating holes with an in-house experimental set-up

verfasst von: Priyabrata Biswal, Sougata Kumar Kar, Banibrata Mukherjee

Erschienen in: Meccanica | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The piezoelectric energy harvesters can be an integral part of self-powered sensor system due to its compatibility with semiconductor technology. In this paper, a modified structural geometry has been proposed in order to improve the performance of energy harvesters with classical cantilever topology by incorporating through holes. A detail mathematical analysis has been carried out to manifest the effect of through hole on resonant frequency of piezo harvester using Rayleigh–Ritz method. The theoretical analysis is validated through simulation studies as well as experimental results. Accordingly, an in-house low cost experimental set-up has been developed using Polyvinylidinefluoride (PVDF) based macro-level energy harvester and loud speaker based vibration set-up. It has been observed that the resonant frequency is reduced from 26.23 Hz to 21.94 Hz due to incorporation of hole to classical cantilever for a given dimension. With input acceleration of 3.7 g, the developed macro-harvester set-up resonates at 23 Hz and is capable of producing power of 59.93 \(\mu\)W with hole based structure whereas power of 14.60 \(\mu\)W is obtained in case of without hole based structure. The macro-scale energy harvester with modified geometry has been also designed and simulated in finite element analysis method to validate the mathematical analysis and it is found that lower the resonant frequency higher the power obtained with the hole based topology. It is verified from the experimental, simulation and theoretical studies, that there is a dominant effect of through hole in the performance improvement of piezoelectric energy harvester.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hou L, Bergmann NW (2012) Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis. IEEE Trans Instrum Meas 61(10):2787CrossRef Hou L, Bergmann NW (2012) Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis. IEEE Trans Instrum Meas 61(10):2787CrossRef
2.
Zurück zum Zitat Mois G, Folea S, Sanislav T (2017) Analysis of three IoT-based wireless sensors for environmental monitoring. IEEE Trans Instrum Meas 66(8):2056CrossRef Mois G, Folea S, Sanislav T (2017) Analysis of three IoT-based wireless sensors for environmental monitoring. IEEE Trans Instrum Meas 66(8):2056CrossRef
3.
Zurück zum Zitat Shirmohammadi S, Barbe K, Grimaldi D, Rapuano S, Grassini S (2016) Instrumentation and measurement in medical, biomedical, and healthcare systems. IEEE Instrum Meas Magazine 19(5):6CrossRef Shirmohammadi S, Barbe K, Grimaldi D, Rapuano S, Grassini S (2016) Instrumentation and measurement in medical, biomedical, and healthcare systems. IEEE Instrum Meas Magazine 19(5):6CrossRef
4.
Zurück zum Zitat Mukherjee B, Swamy KBM, Sen S (2019) A New Analysis on Reduction of Undesired Beam Bending in Electrostatic Comb Drive MEMS Actuator. IEEE Trans Instrum Meas 69(2):488CrossRef Mukherjee B, Swamy KBM, Sen S (2019) A New Analysis on Reduction of Undesired Beam Bending in Electrostatic Comb Drive MEMS Actuator. IEEE Trans Instrum Meas 69(2):488CrossRef
5.
Zurück zum Zitat Li Y, Wang Y, Cao Q, Cao J, Qiao D (2019) A self-powered vibration sensor with wide bandwidth. IEEE Trans Ind Electr 67:560CrossRef Li Y, Wang Y, Cao Q, Cao J, Qiao D (2019) A self-powered vibration sensor with wide bandwidth. IEEE Trans Ind Electr 67:560CrossRef
6.
Zurück zum Zitat He Q, Dong C, Li K, Wang J, Xu D, Li X (2017) A self-powered wireless sensing node for ambient vibration pattern identification by using a hybrid energy-harvesting mode. In: 2017 19th International conference on solid-state sensors, actuators and microsystems (TRANSDUCERS) (IEEE), pp 367–370 He Q, Dong C, Li K, Wang J, Xu D, Li X (2017) A self-powered wireless sensing node for ambient vibration pattern identification by using a hybrid energy-harvesting mode. In: 2017 19th International conference on solid-state sensors, actuators and microsystems (TRANSDUCERS) (IEEE), pp 367–370
7.
Zurück zum Zitat Dai K, Wang X, Yi F, Jiang C, Li R, You Z (2018) Triboelectric nanogenerators as self-powered acceleration sensor under high-g impact. Nano Energy 45:84CrossRef Dai K, Wang X, Yi F, Jiang C, Li R, You Z (2018) Triboelectric nanogenerators as self-powered acceleration sensor under high-g impact. Nano Energy 45:84CrossRef
8.
Zurück zum Zitat Xiang C, Liu C, Hao C, Wang Z, Che L, Zhou X (2017) A self-powered acceleration sensor with flexible materials based on triboelectric effect. Nano energy 31:469CrossRef Xiang C, Liu C, Hao C, Wang Z, Che L, Zhou X (2017) A self-powered acceleration sensor with flexible materials based on triboelectric effect. Nano energy 31:469CrossRef
9.
Zurück zum Zitat Biswal P, Verma N, Kar SK, Mukherjee B (2018) Development and performance analysis of a low cost experimental set up for piezoelectric based energy harvester using loudspeaker. In: 2018 15th IEEE India council international conference (INDICON) (IEEE), pp 1–5 Biswal P, Verma N, Kar SK, Mukherjee B (2018) Development and performance analysis of a low cost experimental set up for piezoelectric based energy harvester using loudspeaker. In: 2018 15th IEEE India council international conference (INDICON) (IEEE), pp 1–5
10.
Zurück zum Zitat Usharani R, Uma G, Umapathy M, Choi SB (2017) A new piezoelectric-patched cantilever beam with a step section for high performance of energy harvesting. Sens Actuators A 265:47CrossRef Usharani R, Uma G, Umapathy M, Choi SB (2017) A new piezoelectric-patched cantilever beam with a step section for high performance of energy harvesting. Sens Actuators A 265:47CrossRef
11.
Zurück zum Zitat Dhakar L, Liu H, Tay F, Lee C (2013) A new energy harvester design for high power output at low frequencies. Sens Actuators A 199:344CrossRef Dhakar L, Liu H, Tay F, Lee C (2013) A new energy harvester design for high power output at low frequencies. Sens Actuators A 199:344CrossRef
12.
Zurück zum Zitat Xiong Y, Song F, Leng X (2019) A piezoelectric cantilever-beam energy harvester (PCEH) with a rectangular hole in the metal substrate. Microsyst Technol 26:801–810CrossRef Xiong Y, Song F, Leng X (2019) A piezoelectric cantilever-beam energy harvester (PCEH) with a rectangular hole in the metal substrate. Microsyst Technol 26:801–810CrossRef
13.
Zurück zum Zitat Saeedi K, Leo A, Bhat RB, Stiharu I (2012) Vibration of circular plate with multiple eccentric circular perforations by the Rayleigh-Ritz method. J Mech Sci Technol 26(5):1439CrossRef Saeedi K, Leo A, Bhat RB, Stiharu I (2012) Vibration of circular plate with multiple eccentric circular perforations by the Rayleigh-Ritz method. J Mech Sci Technol 26(5):1439CrossRef
14.
Zurück zum Zitat Kwak MK, Han S (2007) Free vibration analysis of rectangular plate with a hole by means of independent coordinate coupling method. J Sound Vib 306(1–2):12CrossRef Kwak MK, Han S (2007) Free vibration analysis of rectangular plate with a hole by means of independent coordinate coupling method. J Sound Vib 306(1–2):12CrossRef
15.
Zurück zum Zitat Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectromech Syst 20(5):1131CrossRef Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectromech Syst 20(5):1131CrossRef
16.
Zurück zum Zitat Castagnetti D, Radi E (2018) A piezoelectric based energy harvester with dynamic magnification: modelling, design and experimental assessment. Meccanica 53(11–12):2725CrossRef Castagnetti D, Radi E (2018) A piezoelectric based energy harvester with dynamic magnification: modelling, design and experimental assessment. Meccanica 53(11–12):2725CrossRef
17.
Zurück zum Zitat Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18(2):025009CrossRef Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18(2):025009CrossRef
18.
Zurück zum Zitat Felix JLP, Balthazar JM, Rocha RT, Tusset AM, Janzen FC (2018) On vibration mitigation and energy harvesting of a non-ideal system with autoparametric vibration absorber system. Meccanica 53(13):3177MathSciNetCrossRef Felix JLP, Balthazar JM, Rocha RT, Tusset AM, Janzen FC (2018) On vibration mitigation and energy harvesting of a non-ideal system with autoparametric vibration absorber system. Meccanica 53(13):3177MathSciNetCrossRef
19.
Zurück zum Zitat Leadenham S, Erturk A (2015) Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances. Smart Mater Struct 24(5):055021CrossRef Leadenham S, Erturk A (2015) Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances. Smart Mater Struct 24(5):055021CrossRef
20.
Zurück zum Zitat Rezaeisaray M, El Gowini M, Sameoto D, Raboud D, Moussa W (2015) Low frequency piezoelectric energy harvesting at multi vibration mode shapes. Sens Actuators A 228:104CrossRef Rezaeisaray M, El Gowini M, Sameoto D, Raboud D, Moussa W (2015) Low frequency piezoelectric energy harvesting at multi vibration mode shapes. Sens Actuators A 228:104CrossRef
21.
Zurück zum Zitat Chaudhuri D, Kundu S, Chattoraj N (2019) Design and analysis of MEMS based piezoelectric energy harvester for machine monitoring application. Microsyst Technol 25(4):1437CrossRef Chaudhuri D, Kundu S, Chattoraj N (2019) Design and analysis of MEMS based piezoelectric energy harvester for machine monitoring application. Microsyst Technol 25(4):1437CrossRef
22.
Zurück zum Zitat Tian Y, Li G, Yi Z, Liu J, Yang B (2018) A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film. J Phys Chem Solids 117:21CrossRef Tian Y, Li G, Yi Z, Liu J, Yang B (2018) A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film. J Phys Chem Solids 117:21CrossRef
23.
Zurück zum Zitat Litak G, Friswell MI, Adhikari S (2016) Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51(5):1017MathSciNetCrossRef Litak G, Friswell MI, Adhikari S (2016) Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51(5):1017MathSciNetCrossRef
24.
Zurück zum Zitat Syta A, Bowen C, Kim H, Rysak A, Litak G (2015) Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50(8):1961CrossRef Syta A, Bowen C, Kim H, Rysak A, Litak G (2015) Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50(8):1961CrossRef
25.
Zurück zum Zitat Fernando SN, Chaffey J (2005) Maximising microcantilever response: an analytical approach using mathematical models. In: Smart structures, devices, and systems II, vol. 5649 International society for optics and photonics, vol. 5649, pp 265–275 Fernando SN, Chaffey J (2005) Maximising microcantilever response: an analytical approach using mathematical models. In: Smart structures, devices, and systems II, vol. 5649 International society for optics and photonics, vol. 5649, pp 265–275
26.
Zurück zum Zitat Swamy KB, Mukherjee B, Mohammed ZAS, Chakraborty S, Sen S (2014) Performance evaluation ofperforated micro-cantilevers for MEMS applications. J Micro/Nanolithography MEMS MOEMS 13(2):023001CrossRef Swamy KB, Mukherjee B, Mohammed ZAS, Chakraborty S, Sen S (2014) Performance evaluation ofperforated micro-cantilevers for MEMS applications. J Micro/Nanolithography MEMS MOEMS 13(2):023001CrossRef
27.
Zurück zum Zitat Younis MI (2011) Microbeams. In: MEMS linear and nonlinear statics and dynamics (Springer), pp. 251–357 Younis MI (2011) Microbeams. In: MEMS linear and nonlinear statics and dynamics (Springer), pp. 251–357
28.
Zurück zum Zitat Beer F, Johnston E Jr, Dewolf J, Mazurek D (2010) Mechanics of materials, sixth edit edition. Mcgraw-Hill education, United States Beer F, Johnston E Jr, Dewolf J, Mazurek D (2010) Mechanics of materials, sixth edit edition. Mcgraw-Hill education, United States
30.
Zurück zum Zitat Jia Y, Seshia AA (2016) Five topologies of cantilever-based MEMS piezoelectric vibration energy harvesters: a numerical and experimental comparison. Microsyst Technol 22(12):2841CrossRef Jia Y, Seshia AA (2016) Five topologies of cantilever-based MEMS piezoelectric vibration energy harvesters: a numerical and experimental comparison. Microsyst Technol 22(12):2841CrossRef
31.
Zurück zum Zitat Wang L, Lu D, Jiang Z, Jia C, Wu Y, Zhou X, Zhao L, Zhao Y (2018) A piezoelectric cantilever with novel large mass for harvesting energy from low frequency vibrations. AIP Adv 8(11):115205CrossRef Wang L, Lu D, Jiang Z, Jia C, Wu Y, Zhou X, Zhao L, Zhao Y (2018) A piezoelectric cantilever with novel large mass for harvesting energy from low frequency vibrations. AIP Adv 8(11):115205CrossRef
32.
Zurück zum Zitat Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Ph.D. thesis, University of California, Berkeley Berkeley, CA Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Ph.D. thesis, University of California, Berkeley Berkeley, CA
Metadaten
Titel
Performance improvement of low frequency piezoelectric energy harvester incorporating holes with an in-house experimental set-up
verfasst von
Priyabrata Biswal
Sougata Kumar Kar
Banibrata Mukherjee
Publikationsdatum
03.01.2021
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1/2021
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01279-y

Weitere Artikel der Ausgabe 1/2021

Meccanica 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.