Skip to main content
Erschienen in: Wireless Personal Communications 2/2020

13.12.2019

Performance of Wireless Powered Multi-user Multi-relay Communication Networks with Outdated CSI

verfasst von: Xinjie Wang, Enyu Li, Guang Yang, Zeju Wu, Lisheng Fan

Erschienen in: Wireless Personal Communications | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate the wireless powered multi-user multi-relay communication network, in which only relay nodes need energy harvesting with power splitting-based simultaneous wireless information and power transfer architecture. A low-complexity practical scheme, in which the best user selection and partial Nth best relay selection are adopted, is proposed and analyzed under the impact of outdated channel state information (CSI). The exact and lower bound closed-form expressions for the outage probability are derived over independent but not necessarily identical distributed (i.n.i.d) Rayleigh fading channel, and its asymptotic analysis is also given. The asymptotic analysis reveals that the diversity gain can achieve 2, which is different from the system without outdated CSI. The correctness of analytical result is validated by Monte Carlo simulations, and simulation results provide insights into the effect of system parameters, i.e., the impact of outdated CSI, the number of relays and users, average channel fading power, energy harvesting coefficient and power-splitting ratio, on the outage performance. At last, simulation results show that the outdated CSI and the number of relays also affect the optimal value of the power-splitting ratio.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Varshney, L. R. (2008). Transporting information and energy simultaneously. In Proceedings of the IEEE international symposium on information theory (Vol. 2008, pp. 1612–1616). Varshney, L. R. (2008). Transporting information and energy simultaneously. In Proceedings of the IEEE international symposium on information theory (Vol. 2008, pp. 1612–1616).
2.
Zurück zum Zitat Huang, K., & Lau, V. K. N. (2015). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef Huang, K., & Lau, V. K. N. (2015). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef
3.
Zurück zum Zitat Zhong, C., Chen, X., Zhang, Z., & Karagiannidis, G. K. (2015). Wireless powered communications: Performance analysis and optimization. IEEE Transactions on Communications, 63(12), 5178–5190.CrossRef Zhong, C., Chen, X., Zhang, Z., & Karagiannidis, G. K. (2015). Wireless powered communications: Performance analysis and optimization. IEEE Transactions on Communications, 63(12), 5178–5190.CrossRef
4.
Zurück zum Zitat Zhao, F., Lin, H., Zhong, C., Hadzi-Velkov, Z., Karagiannidis, G. K., & Zhang, Z. (2018). On the capacity of wireless powered communication systems over Rician fading channels. IEEE Transactions on Communications, 66(1), 404–417.CrossRef Zhao, F., Lin, H., Zhong, C., Hadzi-Velkov, Z., Karagiannidis, G. K., & Zhang, Z. (2018). On the capacity of wireless powered communication systems over Rician fading channels. IEEE Transactions on Communications, 66(1), 404–417.CrossRef
5.
Zurück zum Zitat Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRef Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRef
6.
Zurück zum Zitat Liu, L., Zhang, R., & Chua, K.-C. (2014). Multi-antenna wireless powered communication with energy beamforming. IEEE Transactions on Communications, 62(12), 4349–4361.CrossRef Liu, L., Zhang, R., & Chua, K.-C. (2014). Multi-antenna wireless powered communication with energy beamforming. IEEE Transactions on Communications, 62(12), 4349–4361.CrossRef
7.
Zurück zum Zitat Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef
8.
Zurück zum Zitat Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRef Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRef
9.
Zurück zum Zitat Huang, K., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.MathSciNetCrossRef Huang, K., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.MathSciNetCrossRef
10.
Zurück zum Zitat Laneman, J. N., Tse, D., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRef Laneman, J. N., Tse, D., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRef
11.
Zurück zum Zitat Chen, H., Li, Y., Rebelatto, J. L., Uchoa-Filhoand, B. F., & Vucetic, B. (2015). Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Transactions on Signal Processing, 63(7), 1700–1711.MathSciNetCrossRef Chen, H., Li, Y., Rebelatto, J. L., Uchoa-Filhoand, B. F., & Vucetic, B. (2015). Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Transactions on Signal Processing, 63(7), 1700–1711.MathSciNetCrossRef
12.
Zurück zum Zitat Liang, H., Zhong, C., Suraweera, H. A., Zheng, G., & Zhang, Z. (2017). Optimization and analysis of wireless powered multi-antenna cooperative systems. IEEE Transactions on Wireless Communications, 16(5), 3267–3281.CrossRef Liang, H., Zhong, C., Suraweera, H. A., Zheng, G., & Zhang, Z. (2017). Optimization and analysis of wireless powered multi-antenna cooperative systems. IEEE Transactions on Wireless Communications, 16(5), 3267–3281.CrossRef
13.
Zurück zum Zitat Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef
14.
Zurück zum Zitat Ju, M. K., Kang, M. K., Hwang, S., & Jeong, C. (2015). Maximum transmission rate of PSR/TSR protocols in wireless energy harvesting DF-based relay networks. IEEE Journal on Selected Areas in Communications, 33(12), 2701–2717.CrossRef Ju, M. K., Kang, M. K., Hwang, S., & Jeong, C. (2015). Maximum transmission rate of PSR/TSR protocols in wireless energy harvesting DF-based relay networks. IEEE Journal on Selected Areas in Communications, 33(12), 2701–2717.CrossRef
15.
Zurück zum Zitat Ikki, S., & Ahmed, M. H. (2010). On the performance of cooperative-diversity networks with the Nth best-relay selection scheme. IEEE Transactions on Communications, 58(11), 3062–3069.CrossRef Ikki, S., & Ahmed, M. H. (2010). On the performance of cooperative-diversity networks with the Nth best-relay selection scheme. IEEE Transactions on Communications, 58(11), 3062–3069.CrossRef
16.
Zurück zum Zitat Ding, H., Ge, J., Costa, D. B., & Jiang, Z. (2010). Diversity and coding gains of fixed-gain amplify-and-forward with partial relay selection in Nakagami-m fading. IEEE Communications Letters, 14(8), 734–736.CrossRef Ding, H., Ge, J., Costa, D. B., & Jiang, Z. (2010). Diversity and coding gains of fixed-gain amplify-and-forward with partial relay selection in Nakagami-m fading. IEEE Communications Letters, 14(8), 734–736.CrossRef
17.
Zurück zum Zitat Krikidis, I. (2015). Relay selection in wireless powered cooperative networks with energy storage. IEEE Journal on Selected Areas in Communications, 33(12), 2596–2610.CrossRef Krikidis, I. (2015). Relay selection in wireless powered cooperative networks with energy storage. IEEE Journal on Selected Areas in Communications, 33(12), 2596–2610.CrossRef
18.
Zurück zum Zitat Do, N. T., Costa, D. B. D., Duong, T. Q., Bao, V. N. Q., & An, B. (2017). Exploiting direct links in multiuser multirelay SWIPT cooperative networks with opportunistic scheduling. IEEE Transactions on Communications, 16(8), 5410–5427. Do, N. T., Costa, D. B. D., Duong, T. Q., Bao, V. N. Q., & An, B. (2017). Exploiting direct links in multiuser multirelay SWIPT cooperative networks with opportunistic scheduling. IEEE Transactions on Communications, 16(8), 5410–5427.
19.
Zurück zum Zitat Michalopoulos, D. S., Suraweera, H. A., Karagiannidis, G. K., & Schober, R. (2010). Amplify-and-forward relay selection with outdated channel state information. In Proceedings of the IEEE global telecommunications conference (Vol. 2010, pp. 1–6). Michalopoulos, D. S., Suraweera, H. A., Karagiannidis, G. K., & Schober, R. (2010). Amplify-and-forward relay selection with outdated channel state information. In Proceedings of the IEEE global telecommunications conference (Vol. 2010, pp. 1–6).
20.
Zurück zum Zitat Vicario, J. L., Bel, A., Lopez-Salcedo, J. A., & Seco, G. (2009). Opportunistic relay selection with outdated CSI: Outage probability and diversity analysis. IEEE Transactions on Wireless Communications, 8(6), 2872–2876.CrossRef Vicario, J. L., Bel, A., Lopez-Salcedo, J. A., & Seco, G. (2009). Opportunistic relay selection with outdated CSI: Outage probability and diversity analysis. IEEE Transactions on Wireless Communications, 8(6), 2872–2876.CrossRef
21.
Zurück zum Zitat Suraweera, H. A., Soysa, M., Tellambura, C., & Garg, H. K. (2010). Performance analysis of partial relay selection with feedback delay. IEEE Signal Processing Letters, 17(6), 531–534.CrossRef Suraweera, H. A., Soysa, M., Tellambura, C., & Garg, H. K. (2010). Performance analysis of partial relay selection with feedback delay. IEEE Signal Processing Letters, 17(6), 531–534.CrossRef
22.
Zurück zum Zitat Chen, H., Liu, J., Dong, Z., Zhou, Y., & Guo, W. (2011). Exact capacity analysis of partial relay selection under outdated CSI over Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 60(8), 4014–4018.CrossRef Chen, H., Liu, J., Dong, Z., Zhou, Y., & Guo, W. (2011). Exact capacity analysis of partial relay selection under outdated CSI over Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 60(8), 4014–4018.CrossRef
23.
Zurück zum Zitat Nguyen, H., Dob, D., Nguyenc, T., & Voznak, M. (2017). Exploiting hybrid time switching-based and power splitting-based relaying protocol in wireless powered communication networks with outdated channel state information. AUTOMATIKA, 58(1), 111–118.CrossRef Nguyen, H., Dob, D., Nguyenc, T., & Voznak, M. (2017). Exploiting hybrid time switching-based and power splitting-based relaying protocol in wireless powered communication networks with outdated channel state information. AUTOMATIKA, 58(1), 111–118.CrossRef
24.
Zurück zum Zitat Chen, T., Ding, Z., & Tian, G. (2014). Wireless information and power transfer using energy harvesting relay with outdated CSI. In 2014 international workshop on high mobility wireless communications (HMWC’2014) (pp. 1–5) Chen, T., Ding, Z., & Tian, G. (2014). Wireless information and power transfer using energy harvesting relay with outdated CSI. In 2014 international workshop on high mobility wireless communications (HMWC’2014) (pp. 1–5)
25.
Zurück zum Zitat Deng, D., Yu, M., Xia, J., Na, Z., Zhao, J., & Yang, Q. (2018). Wireless powered cooperative communications with direct links over correlated channels. Physical Communication, 28, 147–153.CrossRef Deng, D., Yu, M., Xia, J., Na, Z., Zhao, J., & Yang, Q. (2018). Wireless powered cooperative communications with direct links over correlated channels. Physical Communication, 28, 147–153.CrossRef
26.
Zurück zum Zitat Zhang, J., & Pan, G. (2016). Outage analysis of wireless-powered relaying MIMO systems with non-linear energy harvesters and imperfect CSI. IEEE Access, 4, 7046–7053.CrossRef Zhang, J., & Pan, G. (2016). Outage analysis of wireless-powered relaying MIMO systems with non-linear energy harvesters and imperfect CSI. IEEE Access, 4, 7046–7053.CrossRef
27.
Zurück zum Zitat Michalopoulos, D., & Karagiannidis, G. (2008). Performance analysis of single relay adaptive in Rayleigh fading. IEEE Transactions on Wireless Communications, 7(10), 3718–3724.CrossRef Michalopoulos, D., & Karagiannidis, G. (2008). Performance analysis of single relay adaptive in Rayleigh fading. IEEE Transactions on Wireless Communications, 7(10), 3718–3724.CrossRef
28.
Zurück zum Zitat Vaughan, R. J., & Venables, W. N. (1972). Permanent expressions for order statistics densities. Journal of the Royal Statistical Society, Series B, 34(2), 308–310.MathSciNetMATH Vaughan, R. J., & Venables, W. N. (1972). Permanent expressions for order statistics densities. Journal of the Royal Statistical Society, Series B, 34(2), 308–310.MathSciNetMATH
29.
Zurück zum Zitat Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press Inc.MATH Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press Inc.MATH
30.
Zurück zum Zitat Zhu, G., Zhong, C., Suraweera, H. A., Karagiannidis, G. K., Zhang, Z., & Tsiftsis, T. A. (2015). Wireless information and power transfer in relay systems with multiple antennas and interference. IEEE Transactions on Communications, 63(4), 1400–1418.CrossRef Zhu, G., Zhong, C., Suraweera, H. A., Karagiannidis, G. K., Zhang, Z., & Tsiftsis, T. A. (2015). Wireless information and power transfer in relay systems with multiple antennas and interference. IEEE Transactions on Communications, 63(4), 1400–1418.CrossRef
31.
Zurück zum Zitat Li, E., Yang, S., & Wu, H. (2012). A source-relay selection scheme in two-way amplify-and-forward relaying networks. IEEE Communications Letters, 16(10), 1564–1567.CrossRef Li, E., Yang, S., & Wu, H. (2012). A source-relay selection scheme in two-way amplify-and-forward relaying networks. IEEE Communications Letters, 16(10), 1564–1567.CrossRef
32.
Zurück zum Zitat Li, E., Wang, X., Dong, Y., & Li, Y. (2016). Research on the Nth-best relay selection with outdated feedback in selection cooperation systems. Wireless Personal Communications, 89(1), 45–59.CrossRef Li, E., Wang, X., Dong, Y., & Li, Y. (2016). Research on the Nth-best relay selection with outdated feedback in selection cooperation systems. Wireless Personal Communications, 89(1), 45–59.CrossRef
33.
Zurück zum Zitat Xia, J., Xu, Y., Deng, D., Zhou, Q., & Fan, L. (2019). Intelligent secure communication for internet of things with statistical channel state information of attacker. IEEE Access, 7(1), 144481–144488.CrossRef Xia, J., Xu, Y., Deng, D., Zhou, Q., & Fan, L. (2019). Intelligent secure communication for internet of things with statistical channel state information of attacker. IEEE Access, 7(1), 144481–144488.CrossRef
35.
Zurück zum Zitat Liu, G., Xu, Y., He, Z., Rao, Y., Xia, J., & Fan, L. (2019). Deep learning based channel prediction for edge computing networks towards intelligent connected vehicles. IEEE Access, 7(1), 114487–114495.CrossRef Liu, G., Xu, Y., He, Z., Rao, Y., Xia, J., & Fan, L. (2019). Deep learning based channel prediction for edge computing networks towards intelligent connected vehicles. IEEE Access, 7(1), 114487–114495.CrossRef
Metadaten
Titel
Performance of Wireless Powered Multi-user Multi-relay Communication Networks with Outdated CSI
verfasst von
Xinjie Wang
Enyu Li
Guang Yang
Zeju Wu
Lisheng Fan
Publikationsdatum
13.12.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06890-1

Weitere Artikel der Ausgabe 2/2020

Wireless Personal Communications 2/2020 Zur Ausgabe

Neuer Inhalt