Skip to main content

2013 | OriginalPaper | Buchkapitel

Performance Study of GPU- and FPGA-Based 3-D Monte Carlo Computation Used in Dynamic Radiation Topotherapy

verfasst von : T. T. Le, J. H. Levan

Erschienen in: 4th International Conference on Biomedical Engineering in Vietnam

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

The development of cluster and parallel computers has increased the popularity of implementing the Monte Carlo computational method in medical and scientific applications. However, having access to these high-performance systems is not easy and a reasonable size system is not yet able to solve many popular Monte Carlo problems near real-time. The Field Programmable Gate Arrays (FPGAs) have been proved to be useful in speeding up the Monte Carlo algorithm since they are able to execute the problem with a high degree of parallelism. In recent years, the Graphic Processing Units (GPUs) have been proved to be useful for many general-purpose calculations due to their parallel and pipelined architecture, which is able to accelerate various algorithms. Since Monte Carlo simulations require intensive computations, GPU architecture can also deliver great performance for Monte Carlo simulations similarly to the FPGA. This paper explores performance characteristics of the FPGA and GPU in computational intensive 3-D Monte Carlo applications. The study is part of our current research on the study of dynamic radiation topotherapy with stationary sweeping fan beam and translational moving microbeam on stationary treatment couch. We performed our initial study with photon interactions on 3-D water phantoms and the initial results (without intensive performance tuning) showed that performance of the 16-core NVidia GeForce 8400 GS GPU was about 2 times better than single-core 3-GHz Intel Xeon and about 4 times slower than the Xilinx Virtex-5 FPGA. We learned that out-of-core memory contention is an important performance drawback. Although we performed our study on photon transport, we expected the results to be similar for charged-particle transport (our interest in dynamic topotherapy) since only core Monte Carlo calculations were implemented on the GPU and the FPGA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadaten
Titel
Performance Study of GPU- and FPGA-Based 3-D Monte Carlo Computation Used in Dynamic Radiation Topotherapy
verfasst von
T. T. Le
J. H. Levan
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-32183-2_84

Neuer Inhalt