Skip to main content
Erschienen in:

17.10.2022

Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease

verfasst von: Siddhartha Kumar Arjaria, Abhishek Singh Rathore, Dhananjay Bisen, Sanjib Bhattacharyya

Erschienen in: Annals of Data Science | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent times, various machine learning approaches have been widely employed for effective diagnosis and prediction of diseases like cancer, thyroid, Covid-19, etc. Likewise, Alzheimer’s (AD) is also one progressive malady that destroys memory and cognitive function over time. Unfortunately, there are no dedicated AI-based solutions for diagnoses of AD to go hand in hand with medical diagnosis, even though multiple factors contribute to the diagnosis, making AI a very viable supplementary diagnostic solution. This paper reports an endeavor to apply various machine learning algorithms like SGD, k-Nearest Neighbors, Logistic Regression, Decision tree, Random Forest, AdaBoost, Neural Network, SVM, and Naïve Bayes on the dataset of affected victims to diagnose Alzheimer’s disease. Longitudinal collections of subjects from OASIS dataset have been used for prediction. Moreover, some feature selection and dimension reduction methods like Information Gain, Information Gain Ratio, Gini index, Chi-Squared, and PCA are applied to rank different factors and identify the optimum number of factors from the dataset for disease diagnosis. Furthermore, performance is evaluated of each classifier in terms of ROC-AUC, accuracy, F1 score, recall, and precision as well as included comparative analysis between algorithms. Our study suggests that approximately 90% classification accuracy is observed under top-rated four features CDR, SES, nWBV, and EDUC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Gaugler J, James B, Marin A (2019) 2019 Alzheimer’s disease facts and figures Gaugler J, James B, Marin A (2019) 2019 Alzheimer’s disease facts and figures
4.
Zurück zum Zitat Xu N, Shen Y, Zhu YY et al (2017) Internet of things, real-time decision making, and artificial intelligence. In: Mishra D, Buyya R, Mohapatra P, Patnaik S (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 107–115 Xu N, Shen Y, Zhu YY et al (2017) Internet of things, real-time decision making, and artificial intelligence. In: Mishra D, Buyya R, Mohapatra P, Patnaik S (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 107–115
8.
Zurück zum Zitat Luo P, Kang G, Xu X (2020) A novel feature selection and classification method of Alzheimer’s disease based on multi-features in MRI. In: Proceedings of the 2020 10th international conference on bioscience, biochemistry and bioinformatics. Association for Computing Machinery, New York, NY, USA, pp 114–119 Luo P, Kang G, Xu X (2020) A novel feature selection and classification method of Alzheimer’s disease based on multi-features in MRI. In: Proceedings of the 2020 10th international conference on bioscience, biochemistry and bioinformatics. Association for Computing Machinery, New York, NY, USA, pp 114–119
10.
Zurück zum Zitat Zheng X, Shi J, Zhang Q et al (2017) Improving MRI-based diagnosis of Alzheimer’s disease via an ensemble privileged information learning algorithm. In: Proceedings of 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), pp 456–459 Zheng X, Shi J, Zhang Q et al (2017) Improving MRI-based diagnosis of Alzheimer’s disease via an ensemble privileged information learning algorithm. In: Proceedings of 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), pp 456–459
11.
Zurück zum Zitat Ji H, Liu Z, Yan WQ, Klette R (2019) Early diagnosis of Alzheimer’s disease using deep learning. In: Proceedings of the 2nd international conference on control and computer vision. Association for Computing Machinery, New York, NY, USA, pp 87–91 Ji H, Liu Z, Yan WQ, Klette R (2019) Early diagnosis of Alzheimer’s disease using deep learning. In: Proceedings of the 2nd international conference on control and computer vision. Association for Computing Machinery, New York, NY, USA, pp 87–91
12.
Zurück zum Zitat Valliani A, Soni A (2017) Deep residual nets for improved Alzheimer’s diagnosis. In: Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics. Association for Computing Machinery, New York, NY, USA, p 615 Valliani A, Soni A (2017) Deep residual nets for improved Alzheimer’s diagnosis. In: Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics. Association for Computing Machinery, New York, NY, USA, p 615
13.
Zurück zum Zitat Cherdal S, Mouline S (2016) Petri nets for modelling and analysing a complex system related to Alzheimer’s disease. In: Proceedings of the 31st annual ACM symposium on applied computing. Association for Computing Machinery, New York, NY, USA, pp 309–312 Cherdal S, Mouline S (2016) Petri nets for modelling and analysing a complex system related to Alzheimer’s disease. In: Proceedings of the 31st annual ACM symposium on applied computing. Association for Computing Machinery, New York, NY, USA, pp 309–312
14.
Zurück zum Zitat McCrackin L (2018) Early detection of Alzheimer’s disease using deep learning. In: Bagheri E, Cheung JCK (eds) Advances in artificial intelligence. Springer, Cham, pp 355–359CrossRef McCrackin L (2018) Early detection of Alzheimer’s disease using deep learning. In: Bagheri E, Cheung JCK (eds) Advances in artificial intelligence. Springer, Cham, pp 355–359CrossRef
15.
Zurück zum Zitat Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. In: International conference on medical image computing and computer-assisted intervention-MICCAI, vol 10435, pp 3–11. https://doi.org/10.1007/978-3-319-66179-7_1 Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. In: International conference on medical image computing and computer-assisted intervention-MICCAI, vol 10435, pp 3–11. https://​doi.​org/​10.​1007/​978-3-319-66179-7_​1
16.
Zurück zum Zitat Zhao Y, He L (2015) Deep Learning in the EEG diagnosis of Alzheimer’s disease. In: Jawahar CV, Shan S (eds) Computer vision-ACCV 2014 workshops. Springer, Cham, pp 340–353CrossRef Zhao Y, He L (2015) Deep Learning in the EEG diagnosis of Alzheimer’s disease. In: Jawahar CV, Shan S (eds) Computer vision-ACCV 2014 workshops. Springer, Cham, pp 340–353CrossRef
17.
Zurück zum Zitat Sun X, Hu L, Yao Y, Wang Y (2017) GSplit LBI: taming the procedural bias in neuroimaging for disease prediction. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 107–115 Sun X, Hu L, Yao Y, Wang Y (2017) GSplit LBI: taming the procedural bias in neuroimaging for disease prediction. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 107–115
18.
Zurück zum Zitat Cao P, Liu X, Yang J et al (2017) Sparse multi-kernel based multi-task learning for joint prediction of clinical scores and biomarker identification in Alzheimer’s disease. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 195–202 Cao P, Liu X, Yang J et al (2017) Sparse multi-kernel based multi-task learning for joint prediction of clinical scores and biomarker identification in Alzheimer’s disease. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 195–202
20.
Zurück zum Zitat Xu N, Shen Y, Zhu Y (2019) A multi-task learning framework for automatic early detection of Alzheimer’s. In: Li G, Yang J, Gama J et al (eds) Database systems for advanced applications. Springer, Cham, pp 240–243 Xu N, Shen Y, Zhu Y (2019) A multi-task learning framework for automatic early detection of Alzheimer’s. In: Li G, Yang J, Gama J et al (eds) Database systems for advanced applications. Springer, Cham, pp 240–243
21.
Zurück zum Zitat Zhang P, Shi B, Smith CD, Liu J (2017) Nonlinear feature space transformation to improve the prediction of MCI to AD conversion. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 12–20 Zhang P, Shi B, Smith CD, Liu J (2017) Nonlinear feature space transformation to improve the prediction of MCI to AD conversion. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 12–20
22.
Zurück zum Zitat Zhu X, Thung K-H, Adeli E et al (2017) Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 72–80 Zhu X, Thung K-H, Adeli E et al (2017) Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 72–80
23.
Zurück zum Zitat Zhu Y, Kim M, Zhu X et al (2017) Personalized diagnosis for Alzheimer’s disease. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 205–213 Zhu Y, Kim M, Zhu X et al (2017) Personalized diagnosis for Alzheimer’s disease. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 205–213
25.
Zurück zum Zitat Liu S (2017) Alzheimer’s disease staging and prediction. In: Multimodal neuroimaging computing for the characterization of neurodegenerative disorders. Springer, Singapore, pp 95–108 Liu S (2017) Alzheimer’s disease staging and prediction. In: Multimodal neuroimaging computing for the characterization of neurodegenerative disorders. Springer, Singapore, pp 95–108
29.
Zurück zum Zitat Palafox GDL, Ortíz ALS, Melendez OM, et al (2017) Hippocampal segmentation using mean shift algorithm. In: Proceeding of SPIE Palafox GDL, Ortíz ALS, Melendez OM, et al (2017) Hippocampal segmentation using mean shift algorithm. In: Proceeding of SPIE
30.
Zurück zum Zitat Chen X, Zhao D, Zhong W (2019) Auxiliary recognition of Alzheimer’s disease based on Gaussian probability brain image segmentation model. In: Ning H (ed) Cyberspace data and intelligence, and cyber-living, syndrome, and health. Springer, Singapore, pp 513–520CrossRef Chen X, Zhao D, Zhong W (2019) Auxiliary recognition of Alzheimer’s disease based on Gaussian probability brain image segmentation model. In: Ning H (ed) Cyberspace data and intelligence, and cyber-living, syndrome, and health. Springer, Singapore, pp 513–520CrossRef
33.
Zurück zum Zitat Brown SD, Myles AJ (2009) Decision tree modeling Brown SD, Myles AJ (2009) Decision tree modeling
34.
Zurück zum Zitat Dash SS, Nayak SK, Mishra D (2021) A review on machine learning algorithms. In: Mishra D, Buyya R, Mohapatra P, Patnaik S (eds) Intelligent and cloud computing. Springer, Singapore, pp 495–507 Dash SS, Nayak SK, Mishra D (2021) A review on machine learning algorithms. In: Mishra D, Buyya R, Mohapatra P, Patnaik S (eds) Intelligent and cloud computing. Springer, Singapore, pp 495–507
36.
Zurück zum Zitat Shi Y, Tian Y, Kou G, et al (2011) Support vector machines for classification problems. In: Optimization based data mining: theory and applications. Springer, London, pp 3–13 Shi Y, Tian Y, Kou G, et al (2011) Support vector machines for classification problems. In: Optimization based data mining: theory and applications. Springer, London, pp 3–13
37.
Zurück zum Zitat Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin
38.
Zurück zum Zitat Shi Y (2022) Feature selection. In: Advances in big data analytics: theory, algorithms and practices. Springer, Singapore, pp 249–304 Shi Y (2022) Feature selection. In: Advances in big data analytics: theory, algorithms and practices. Springer, Singapore, pp 249–304
Metadaten
Titel
Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease
verfasst von
Siddhartha Kumar Arjaria
Abhishek Singh Rathore
Dhananjay Bisen
Sanjib Bhattacharyya
Publikationsdatum
17.10.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science / Ausgabe 1/2024
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-022-00452-2

Premium Partner