Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 1/2017

22.04.2017 | Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Permeation and optical properties of YAG:Er3+ fiber membrane scintillators prepared by novel sol–gel/electrospinning method

verfasst von: Zhaoxi Chen, Artem A. Trofimov, Luiz G. Jacobsohn, Hai Xiao, Konstantin G. Kornev, Dong Xu, Fei Peng

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An electrospinning method for fabrication of the YAG:Er3+ fibrous membrane is developed and the scintillation properties of the obtained membranes were examined. A homogeneous precursor YAG sol was synthesized allowing to control the sol–gel transition. The synthesized precursor allows one to achieve the 5 wt.% level of fiber doping with Er without formation of any undesired crystalline phases. It was found that the relative humidity had a strong impact on the fiber microstructure. The fibers obtained at the low relative humidity level (~30%) had almost straight cylindrical shape with an average diameter of ~590 nm, their surface was smooth. The shape of fibers obtained at the high relative humidity level (~50%) deviated from the straight cylindrical shape and the average diameter was larger, ~1.12 µm. The fluid permeability of membranes, K, obtained at the low relative humidity level was measured using an upward wicking experiment to give K~10−13 m2. The YAG:Er membrane presented a strong green photoluminescence under ultraviolet excitation and intense radioluminescence dominated by emission lines at 398 and 467 nm under the X-ray excitation. The properties of these materials make them promising candidates as porous scintillators for the detection of ionizing radiation of flowing fluids.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-017-4387-y/MediaObjects/10971_2017_4387_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Keillor ME, Burggraf LW (1997) Detecting alpha radiation by scintillation in porous materials. IEEE Trans Nucl Sci 44(5):1741–1746CrossRef Keillor ME, Burggraf LW (1997) Detecting alpha radiation by scintillation in porous materials. IEEE Trans Nucl Sci 44(5):1741–1746CrossRef
2.
Zurück zum Zitat Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6(11):841–850CrossRef Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6(11):841–850CrossRef
3.
Zurück zum Zitat Huang MH et al. (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRef Huang MH et al. (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRef
4.
Zurück zum Zitat Dong G et al. (2010) Size-dependent polarized photoluminescence from Y3Al5O12: Eu3+ single crystalline nanofiber prepared by electrospinning. J Mater Chem 20(8):1587–1593CrossRef Dong G et al. (2010) Size-dependent polarized photoluminescence from Y3Al5O12: Eu3+ single crystalline nanofiber prepared by electrospinning. J Mater Chem 20(8):1587–1593CrossRef
5.
Zurück zum Zitat Park SJ, Chase GG, Jeong KU, Kim HY (2010) Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor. J Solgel Sci Technol 54(2):188–194CrossRef Park SJ, Chase GG, Jeong KU, Kim HY (2010) Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor. J Solgel Sci Technol 54(2):188–194CrossRef
6.
Zurück zum Zitat Zhu L, Gu L, Zhou Y, Cao S, Cao X (2011) Direct production of a free-standing titanate and titania nanofiber membrane with selective permeability and cleaning performance. J Mater Chem 21(33):12503–12510CrossRef Zhu L, Gu L, Zhou Y, Cao S, Cao X (2011) Direct production of a free-standing titanate and titania nanofiber membrane with selective permeability and cleaning performance. J Mater Chem 21(33):12503–12510CrossRef
7.
Zurück zum Zitat Feng C, Khulbe KC, Matsuura T, Tabe S, Ismail AF (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135CrossRef Feng C, Khulbe KC, Matsuura T, Tabe S, Ismail AF (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135CrossRef
8.
Zurück zum Zitat Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high‐performance polycrystalline Nd: YAG ceramics for solid‐State lasers. J Am Ceram Soc 78(4):1033–1040CrossRef Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high‐performance polycrystalline Nd: YAG ceramics for solid‐State lasers. J Am Ceram Soc 78(4):1033–1040CrossRef
9.
Zurück zum Zitat Pfeifer S, Bischoff M, Niewa R, Clauß B, Buchmeiser MR (2014) Structure formation in yttrium aluminum garnet (YAG) fibers. J Eur Ceram Soc 34(5):1321–1328CrossRef Pfeifer S, Bischoff M, Niewa R, Clauß B, Buchmeiser MR (2014) Structure formation in yttrium aluminum garnet (YAG) fibers. J Eur Ceram Soc 34(5):1321–1328CrossRef
10.
Zurück zum Zitat Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170CrossRef Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170CrossRef
11.
Zurück zum Zitat Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):111101CrossRef Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):111101CrossRef
12.
Zurück zum Zitat Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A Physicochem Engi Asp 187:469–481CrossRef Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A Physicochem Engi Asp 187:469–481CrossRef
13.
Zurück zum Zitat Shojaie-Bahaabad M, Taheri-Nassaj E, Naghizadeh R (2008) An alumina–YAG nanostructured fiber prepared from an aqueous sol–gel precursor: preparation, rheological behavior and spinnability. Ceram Int 34(8):1893–1902CrossRef Shojaie-Bahaabad M, Taheri-Nassaj E, Naghizadeh R (2008) An alumina–YAG nanostructured fiber prepared from an aqueous sol–gel precursor: preparation, rheological behavior and spinnability. Ceram Int 34(8):1893–1902CrossRef
14.
Zurück zum Zitat Li C, Zhang Y, Gong H, Zhang J, Nie L (2009) Preparation, microstructure and properties of yttrium aluminum garnet fibers prepared by sol–gel method. Mater Chem Phys 113(1):31–35CrossRef Li C, Zhang Y, Gong H, Zhang J, Nie L (2009) Preparation, microstructure and properties of yttrium aluminum garnet fibers prepared by sol–gel method. Mater Chem Phys 113(1):31–35CrossRef
15.
Zurück zum Zitat Pullar RC, Taylor MD, Bhattacharya AK (1999) The sintering behaviour, mechanical properties and creep resistance of aligned polycrystalline yttrium aluminium garnet (YAG) fibres, produced from an aqueous sol–gel precursor. J Eur Ceram Soc 19(9):1747–1758CrossRef Pullar RC, Taylor MD, Bhattacharya AK (1999) The sintering behaviour, mechanical properties and creep resistance of aligned polycrystalline yttrium aluminium garnet (YAG) fibres, produced from an aqueous sol–gel precursor. J Eur Ceram Soc 19(9):1747–1758CrossRef
16.
Zurück zum Zitat Shojaie-Bahaabad M, Taheri-Nassaj E, Naghizadeh R (2008) An alumina–YAG nanostructured fiber prepared from an aqueous sol–gel precursor: preparation, rheological behavior and spinnability. Ceram Int 34(8):1893–1902CrossRef Shojaie-Bahaabad M, Taheri-Nassaj E, Naghizadeh R (2008) An alumina–YAG nanostructured fiber prepared from an aqueous sol–gel precursor: preparation, rheological behavior and spinnability. Ceram Int 34(8):1893–1902CrossRef
17.
Zurück zum Zitat Liu Y, Zhang ZF, Halloran J, Laine RM (1998) Yttrium aluminum garnet fibers from metalloorganic precursors. J Am Ceram Soc 81(3):629–645CrossRef Liu Y, Zhang ZF, Halloran J, Laine RM (1998) Yttrium aluminum garnet fibers from metalloorganic precursors. J Am Ceram Soc 81(3):629–645CrossRef
18.
Zurück zum Zitat Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica–PVA nanofibers via sol–gel electrospinning. Langmuir 28(13):5834–5844CrossRef Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica–PVA nanofibers via sol–gel electrospinning. Langmuir 28(13):5834–5844CrossRef
19.
Zurück zum Zitat Hou Z et al. (2008) Preparation and luminescence properties of YVO4: Ln and Y(V,P)O4: Ln (Ln= Eu3+, Sm3+, Dy3+) nanofibers and microbelts by sol−gel/electrospinning process. Chem Mater 20(21):6686–6696CrossRef Hou Z et al. (2008) Preparation and luminescence properties of YVO4: Ln and Y(V,P)O4: Ln (Ln= Eu3+, Sm3+, Dy3+) nanofibers and microbelts by sol−gel/electrospinning process. Chem Mater 20(21):6686–6696CrossRef
20.
Zurück zum Zitat Choi SS, Lee SG, Im SS, Kim SH, Joo YL (2003) Silica nanofibers from electrospinning/sol–gel process. J Mater Sci Lett 22(12):891–893CrossRef Choi SS, Lee SG, Im SS, Kim SH, Joo YL (2003) Silica nanofibers from electrospinning/sol–gel process. J Mater Sci Lett 22(12):891–893CrossRef
21.
Zurück zum Zitat Khalil KA, Almajid AA, El-Danaf EA, El Rayes MM, Sherif ESM (2012) Direct fabrication of yttrium aluminium garnet nanofibers by electrospinning. Int J Electrochem Sci 7:12218–12226 Khalil KA, Almajid AA, El-Danaf EA, El Rayes MM, Sherif ESM (2012) Direct fabrication of yttrium aluminium garnet nanofibers by electrospinning. Int J Electrochem Sci 7:12218–12226
22.
Zurück zum Zitat Suryamas AB, Munir MM, Iskandar F, Okuyama K (2009) Photoluminescent and crystalline properties of Y3− xAl5O12: Cex3+ phosphor nanofibers prepared by electrospinning. J Appl Phys 105(6):064311CrossRef Suryamas AB, Munir MM, Iskandar F, Okuyama K (2009) Photoluminescent and crystalline properties of Y3− xAl5O12: Cex3+ phosphor nanofibers prepared by electrospinning. J Appl Phys 105(6):064311CrossRef
23.
Zurück zum Zitat Ma Z et al. (2012) Porous YAG: Nd3+ fibers with excitation and emission in the human “NIR Optical Window” as luminescent drug carriers. Chem Eur J 18(9):2609–2616CrossRef Ma Z et al. (2012) Porous YAG: Nd3+ fibers with excitation and emission in the human “NIR Optical Window” as luminescent drug carriers. Chem Eur J 18(9):2609–2616CrossRef
24.
Zurück zum Zitat Tsai CC, Kornev KG (2013) Characterization of permeability of electrospun yarns. Langmuir 29(33):10596–10602CrossRef Tsai CC, Kornev KG (2013) Characterization of permeability of electrospun yarns. Langmuir 29(33):10596–10602CrossRef
25.
Zurück zum Zitat C J Brinker, G W Scherer (2013), Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, Boston, MA C J Brinker, G W Scherer (2013), Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, Boston, MA
26.
Zurück zum Zitat Lloyd GO, Steed JW (2009) Anion-tuning of supramolecular gel properties. Nat Chem 1(6):437–442CrossRef Lloyd GO, Steed JW (2009) Anion-tuning of supramolecular gel properties. Nat Chem 1(6):437–442CrossRef
27.
Zurück zum Zitat Veith M et al. (1999) Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods. J Mater Chem 9(12):3069–3079CrossRef Veith M et al. (1999) Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods. J Mater Chem 9(12):3069–3079CrossRef
28.
Zurück zum Zitat Zuo W et al. (2005) Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Poly Eng Sci 45(5):704–709CrossRef Zuo W et al. (2005) Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Poly Eng Sci 45(5):704–709CrossRef
29.
Zurück zum Zitat Chen Z et al. (2015) Electrospun mullite fibers from the sol–gel precursor. J Sol-Gel Sci Technol 74(1):208–219CrossRef Chen Z et al. (2015) Electrospun mullite fibers from the sol–gel precursor. J Sol-Gel Sci Technol 74(1):208–219CrossRef
30.
Zurück zum Zitat Xia G, Zhou S, Zhang J, Xu J (2005) Structural and optical properties of YAG: Ce 3+ phosphors by sol–gel combustion method. J Cryst Growth 279(3):357–362CrossRef Xia G, Zhou S, Zhang J, Xu J (2005) Structural and optical properties of YAG: Ce 3+ phosphors by sol–gel combustion method. J Cryst Growth 279(3):357–362CrossRef
31.
Zurück zum Zitat Lucas R (1918) Rate of capillary ascension of liquids. Kolloid Z 23(15):15–22CrossRef Lucas R (1918) Rate of capillary ascension of liquids. Kolloid Z 23(15):15–22CrossRef
32.
Zurück zum Zitat Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273CrossRef Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273CrossRef
33.
Zurück zum Zitat Callegari G, Tyomkin I, Kornev KG, Neimark AV, Hsieh YL (2011) Absorption and transport properties of ultra-fine cellulose webs. J Colloid Interface Sci 353(1):290–293CrossRef Callegari G, Tyomkin I, Kornev KG, Neimark AV, Hsieh YL (2011) Absorption and transport properties of ultra-fine cellulose webs. J Colloid Interface Sci 353(1):290–293CrossRef
34.
Zurück zum Zitat Gruber JB et al. (1993) Energy levels and correlation crystal-field effects in Er 3+-doped garnets. Phys Rev B 48(21):15561CrossRef Gruber JB et al. (1993) Energy levels and correlation crystal-field effects in Er 3+-doped garnets. Phys Rev B 48(21):15561CrossRef
35.
Zurück zum Zitat Mierczyk Z et al. (2000) Er 3+ and Yb 3+ doped active media for ‘eye safe’laser systems. J Alloys Compd 300:398–406CrossRef Mierczyk Z et al. (2000) Er 3+ and Yb 3+ doped active media for ‘eye safe’laser systems. J Alloys Compd 300:398–406CrossRef
36.
Zurück zum Zitat Zorenko Y et al. (2014) Luminescent properties and energy transfer processes in YAG: Er single crystalline films. J Lumin 154:198–203CrossRef Zorenko Y et al. (2014) Luminescent properties and energy transfer processes in YAG: Er single crystalline films. J Lumin 154:198–203CrossRef
37.
Zurück zum Zitat Zorenko Y et al. (2007) Exciton and antisite defect‐related luminescence in Lu3Al5O12 and Y3Al5O12 garnets. Phys Status Solidi B 244(6):2180–2189CrossRef Zorenko Y et al. (2007) Exciton and antisite defect‐related luminescence in Lu3Al5O12 and Y3Al5O12 garnets. Phys Status Solidi B 244(6):2180–2189CrossRef
38.
Zurück zum Zitat Zorenko Y et al. (2010) Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds. IOP Conf Ser Mater Sci Eng 15(1):012060CrossRef Zorenko Y et al. (2010) Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds. IOP Conf Ser Mater Sci Eng 15(1):012060CrossRef
Metadaten
Titel
Permeation and optical properties of YAG:Er3+ fiber membrane scintillators prepared by novel sol–gel/electrospinning method
verfasst von
Zhaoxi Chen
Artem A. Trofimov
Luiz G. Jacobsohn
Hai Xiao
Konstantin G. Kornev
Dong Xu
Fei Peng
Publikationsdatum
22.04.2017
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 1/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-017-4387-y

Weitere Artikel der Ausgabe 1/2017

Journal of Sol-Gel Science and Technology 1/2017 Zur Ausgabe

Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Modified sol–gel processed silica matrix for gel electrophoresis applications

Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Bioglass® and resulting crystalline materials synthesized via an acetic acid-assisted sol–gel route

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Synthesis and properties of melamine–starch hybrid aerogels cross-linked with formaldehyde

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Surface engineering of TiO2-MWCNT nanocomposites towards tuning of functionalities and minimizing toxicity

Original Paper: Sol-gel, hybrids and solution chemistries

Facile Synthesis of SiO2 From Poly(silyne-co-hydridocarbyne) Preceramic Precursor

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.