Skip to main content

2020 | OriginalPaper | Buchkapitel

6. Perovskite Materials in Batteries

verfasst von : John Henao, Yilber Pacheco, Lorenzo Martinez-Gomez

Erschienen in: Revolution of Perovskite

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Perovskite-type materials are oxide compounds with a growing interest in different disciplines because of the wide range of ions and valences that can be tailored in a simple structure, resulting in oxide compounds with various physical and chemical properties of technological application. Perovskite materials are rather simple to synthesize because of the flexibility of the structure to diverse chemistry. Actually, properties of technological interest of perovskites are photocatalytic activity, magnetism, or pyro–ferro and piezoelectricity, catalysis, and energy storage. In this book chapter, the usage of perovskite-type oxides in batteries is described, starting from a brief description of the perovskite structure and production methods. In addition, a description concerning the latest advances and future research direction is presented. Experimental studies are presented in this chapter as an example of the synthesis and application of perovskite materials in batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Petrović M, Chellappan V, Ramakrishna S (2015) Perovskites: solar cells & engineering applications–materials and device developments. Sol Energy 122:678–699 Petrović M, Chellappan V, Ramakrishna S (2015) Perovskites: solar cells & engineering applications–materials and device developments. Sol Energy 122:678–699
2.
Zurück zum Zitat Dogan F, Lin H, Guilloux-Viry M, Peña O (2015) Focus on properties and applications of perovskites. Sci Tech Adv Mater 16(2) Dogan F, Lin H, Guilloux-Viry M, Peña O (2015) Focus on properties and applications of perovskites. Sci Tech Adv Mater 16(2)
3.
Zurück zum Zitat Bhalla AS, Guo R, Roy R (2000) The perovskite structure–a review of its role in ceramic science and technology. Mater Res Innov 4(1):3–26 Bhalla AS, Guo R, Roy R (2000) The perovskite structure–a review of its role in ceramic science and technology. Mater Res Innov 4(1):3–26
4.
Zurück zum Zitat Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat chem 3(7):546 Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat chem 3(7):546
5.
Zurück zum Zitat Populoh S, Brunko O, Karvonen L, Sagarna L, Saucke G, Thiel P, Weidenkaff A (2015) Perovskite and related oxides for energy harvesting by thermoelectricity. Perovskites Relat Mix oxides: Concepts Appl Populoh S, Brunko O, Karvonen L, Sagarna L, Saucke G, Thiel P, Weidenkaff A (2015) Perovskite and related oxides for energy harvesting by thermoelectricity. Perovskites Relat Mix oxides: Concepts Appl
6.
Zurück zum Zitat Huang K, Lee HY, Goodenough JB (1998) Sr-and Ni-doped LaCoO3 and LaFeO3 perovskites new cathode materials for solid-oxide fuel cells. J Electrochem Soc 145(9):3220–3227 Huang K, Lee HY, Goodenough JB (1998) Sr-and Ni-doped LaCoO3 and LaFeO3 perovskites new cathode materials for solid-oxide fuel cells. J Electrochem Soc 145(9):3220–3227
7.
Zurück zum Zitat Brinkman K, Iijima T, Takamura H (2007) Acceptor doped BiFeO3 ceramics: a new material for oxygen permeation membranes. Jpn J Appl Phys 46(2L):L93 Brinkman K, Iijima T, Takamura H (2007) Acceptor doped BiFeO3 ceramics: a new material for oxygen permeation membranes. Jpn J Appl Phys 46(2L):L93
8.
Zurück zum Zitat Wei Y, Xue J, Fang W, Chen Y, Wang H, Caro J (2015) Enhanced stability of Zr-doped Ba (CeTb) O 3− δ-Ni cermet membrane for hydrogen separation. Chem Commun 51(58):11619–11621 Wei Y, Xue J, Fang W, Chen Y, Wang H, Caro J (2015) Enhanced stability of Zr-doped Ba (CeTb) O 3− δ-Ni cermet membrane for hydrogen separation. Chem Commun 51(58):11619–11621
9.
Zurück zum Zitat Sorita R, Kawano T (1997) A highly selective CO sensor using LaMnO3 electrode-attached zirconia galvanic cell. Sens Actuators B: Chem 40(1):29–32 Sorita R, Kawano T (1997) A highly selective CO sensor using LaMnO3 electrode-attached zirconia galvanic cell. Sens Actuators B: Chem 40(1):29–32
10.
Zurück zum Zitat Giang HT, Duy HT, Ngan PQ, Thai GH, Toan NN (2011) Hydrocarbon gas sensing of nano-crystalline perovskite oxides LnFeO3 (Ln= La, Nd and Sm). Sens Actuators B Chem 158(1):246–251 Giang HT, Duy HT, Ngan PQ, Thai GH, Toan NN (2011) Hydrocarbon gas sensing of nano-crystalline perovskite oxides LnFeO3 (Ln= La, Nd and Sm). Sens Actuators B Chem 158(1):246–251
11.
Zurück zum Zitat Bradha M, Vijayaraghavan T, Suriyaraj SP, Selvakumar R, Ashok AM (2015) Synthesis of photocatalytic La (1–x) AxTiO3. 5–δ (A= Ba, Sr, Ca) nano perovskites and their application for photocatalytic oxidation of congo red dye in aqueous solution. J Rare Earths 33(2):160–167 Bradha M, Vijayaraghavan T, Suriyaraj SP, Selvakumar R, Ashok AM (2015) Synthesis of photocatalytic La (1–x) AxTiO3. 5–δ (A= Ba, Sr, Ca) nano perovskites and their application for photocatalytic oxidation of congo red dye in aqueous solution. J Rare Earths 33(2):160–167
12.
Zurück zum Zitat Iwase A, Kato H, Kudo A (2013) The effect of Au cocatalyst loaded on La-doped NaTaO3 on photocatalytic water splitting and O2 photoreduction. Appl Catal B 136:89–93 Iwase A, Kato H, Kudo A (2013) The effect of Au cocatalyst loaded on La-doped NaTaO3 on photocatalytic water splitting and O2 photoreduction. Appl Catal B 136:89–93
13.
Zurück zum Zitat Deng G, Chen Y, Tao M, Wu C, Shen X, Yang H, Liu M (2010) Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries. Electrochim Acta 55(3):1120–1124 Deng G, Chen Y, Tao M, Wu C, Shen X, Yang H, Liu M (2010) Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries. Electrochim Acta 55(3):1120–1124
14.
Zurück zum Zitat Ma C, Chen K, Liang C, Nan CW, Ishikawa R, More K, Chi M (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ Sci 7(5):1638–1642 Ma C, Chen K, Liang C, Nan CW, Ishikawa R, More K, Chi M (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ Sci 7(5):1638–1642
15.
Zurück zum Zitat Attfield JP, Lightfoot P, Morris RE (2015) Perovskites. Dalton Trans 44(23):10541–10542 Attfield JP, Lightfoot P, Morris RE (2015) Perovskites. Dalton Trans 44(23):10541–10542
16.
Zurück zum Zitat Pena MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101(7):1981–2018 Pena MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101(7):1981–2018
17.
Zurück zum Zitat Kieslich G, Sun S, Cheetham AK (2015) An extended tolerance factor approach for organic–inorganic perovskites. Chem sci 6(6):3430–3433 Kieslich G, Sun S, Cheetham AK (2015) An extended tolerance factor approach for organic–inorganic perovskites. Chem sci 6(6):3430–3433
18.
Zurück zum Zitat Wehinger B, Bosak A, Nazzareni S, Antonangeli D, Mirone A, Chaplot SL, Ghose S (2015) Lattice dynamics of MgSiO3 perovskite (bridgmanite) studied by inelastic x-ray scattering and ab initio calculations. arXiv:1509.06164 Wehinger B, Bosak A, Nazzareni S, Antonangeli D, Mirone A, Chaplot SL, Ghose S (2015) Lattice dynamics of MgSiO3 perovskite (bridgmanite) studied by inelastic x-ray scattering and ab initio calculations. arXiv:​1509.​06164
19.
Zurück zum Zitat Mitchell RH (1995) Perovskites: a revised classification scheme for an important rare earth element host in alkaline rocks. Mineral Soc Ser 7:41–76 Mitchell RH (1995) Perovskites: a revised classification scheme for an important rare earth element host in alkaline rocks. Mineral Soc Ser 7:41–76
20.
Zurück zum Zitat Glasser L (2017) Systematic thermodynamics of layered perovskites: ruddlesden-popper phases. Inorg Chem 56(15):8920–8925 Glasser L (2017) Systematic thermodynamics of layered perovskites: ruddlesden-popper phases. Inorg Chem 56(15):8920–8925
21.
Zurück zum Zitat Granger P, Parvulescu VI, Kaliaguine S, Prellier W (2015) Perovskites and related mixed oxides: concepts and applications. Wiley Granger P, Parvulescu VI, Kaliaguine S, Prellier W (2015) Perovskites and related mixed oxides: concepts and applications. Wiley
22.
Zurück zum Zitat Lichtenberg F, Herrnberger A, Wiedenmann K (2008) Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type AnBnO3n+ 2, A′ Ak–1BkO3 k+ 1 and AmBm–1O3m. Prog Solid State Chem 36(4):253–387 Lichtenberg F, Herrnberger A, Wiedenmann K (2008) Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type AnBnO3n+ 2, A′ Ak–1BkO3 k+ 1 and AmBm–1O3m. Prog Solid State Chem 36(4):253–387
23.
Zurück zum Zitat Nakayama S (2001) LaFeO3 perovskite-type oxide prepared by oxide-mixing, co-precipitation and complex synthesis methods. Journal of materials science 36(23):5643–5648 Nakayama S (2001) LaFeO3 perovskite-type oxide prepared by oxide-mixing, co-precipitation and complex synthesis methods. Journal of materials science 36(23):5643–5648
24.
Zurück zum Zitat Henao J, Martinez-Gomez L (2017) On rare-earth perovskite-type negative electrodes in nickel–hydride (Ni/H) secondary batteries. Mater Renew Sustain Energy 6(2):7 Henao J, Martinez-Gomez L (2017) On rare-earth perovskite-type negative electrodes in nickel–hydride (Ni/H) secondary batteries. Mater Renew Sustain Energy 6(2):7
25.
Zurück zum Zitat Vidal K, Morán-Ruiz A, Larrañaga A, Porras-Vázquez JM, Slater PR, Arriortua MI (2015) Characterization of LaNi0. 6Fe0. 4O3 perovskite synthesized by glycine-nitrate combustion method. Solid State Ion 269:24–29 Vidal K, Morán-Ruiz A, Larrañaga A, Porras-Vázquez JM, Slater PR, Arriortua MI (2015) Characterization of LaNi0. 6Fe0. 4O3 perovskite synthesized by glycine-nitrate combustion method. Solid State Ion 269:24–29
26.
Zurück zum Zitat Wang Q, Deng G, Chen Z, Chen Y, Cheng N (2013) Electrochemical hydrogen property improved in nano-structured perovskite oxide LaFeO3 for Ni/MH battery. J Appl Phys 113(5):053305 Wang Q, Deng G, Chen Z, Chen Y, Cheng N (2013) Electrochemical hydrogen property improved in nano-structured perovskite oxide LaFeO3 for Ni/MH battery. J Appl Phys 113(5):053305
27.
Zurück zum Zitat Kowal K, Kowalczyk M, Czekaj D, Jartych E (2015) Structure and some magnetic properties of (BiFeO3) x-(BaTiO3) 1–x solid solutions prepared by solid-state sintering. Nukleonika 60(1):81–85 Kowal K, Kowalczyk M, Czekaj D, Jartych E (2015) Structure and some magnetic properties of (BiFeO3) x-(BaTiO3) 1–x solid solutions prepared by solid-state sintering. Nukleonika 60(1):81–85
28.
Zurück zum Zitat Rida K, Pena MA, Sastre E, Martinez-Arias A (2012) Effect of calcination temperature on structural properties and catalytic activity in oxidation reactions of LaNiO3 perovskite prepared by Pechini method. J Rare Earths 30(3):210–216 Rida K, Pena MA, Sastre E, Martinez-Arias A (2012) Effect of calcination temperature on structural properties and catalytic activity in oxidation reactions of LaNiO3 perovskite prepared by Pechini method. J Rare Earths 30(3):210–216
29.
Zurück zum Zitat Song M, Chen Y, Tao M, Wu C, Zhu D, Yang H (2010) Some factors affecting the electrochemical performances of LaCrO3 as negative electrodes for Ni/MH batteries. Electrochim Acta 55(9):3103–3108 Song M, Chen Y, Tao M, Wu C, Zhu D, Yang H (2010) Some factors affecting the electrochemical performances of LaCrO3 as negative electrodes for Ni/MH batteries. Electrochim Acta 55(9):3103–3108
30.
Zurück zum Zitat Weidenkaff A, Ebbinghaus SG, Lippert T (2002) Ln1-x Ax CoO3 (Ln= Er, La; A= Ca, Sr)/Carbon nanotube composite materials applied for rechargeable Zn/Air batteries. Chem Mater 14(4):1797–1805 Weidenkaff A, Ebbinghaus SG, Lippert T (2002) Ln1-x Ax CoO3 (Ln= Er, La; A= Ca, Sr)/Carbon nanotube composite materials applied for rechargeable Zn/Air batteries. Chem Mater 14(4):1797–1805
31.
Zurück zum Zitat Takeguchi T, Yamanaka T, Takahashi H, Watanabe H, Kuroki T, Nakanishi H, Matsuda M (2013) Layered perovskite oxide: a reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries. J Am Chem Soc 135(30):11125–11130 Takeguchi T, Yamanaka T, Takahashi H, Watanabe H, Kuroki T, Nakanishi H, Matsuda M (2013) Layered perovskite oxide: a reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries. J Am Chem Soc 135(30):11125–11130
32.
Zurück zum Zitat Shan YJ, Chen L, Inaguma Y, Itoh M, Nakamura T (1995) Oxide cathode with perovskite structure for rechargeable lithium batteries. J Power Sources 54(2):397–402 Shan YJ, Chen L, Inaguma Y, Itoh M, Nakamura T (1995) Oxide cathode with perovskite structure for rechargeable lithium batteries. J Power Sources 54(2):397–402
33.
Zurück zum Zitat Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262 Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262
34.
Zurück zum Zitat Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607 Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607
35.
Zurück zum Zitat Kraytsberg A, Ein-Eli Y (2011) Review on Li–air batteries—Opportunities, limitations and perspective. J Power Sources 196(3):886–893 Kraytsberg A, Ein-Eli Y (2011) Review on Li–air batteries—Opportunities, limitations and perspective. J Power Sources 196(3):886–893
36.
Zurück zum Zitat Lu F, Wang Y, Jin C, Li F, Yang R, Chen F (2015) Microporous La 0.8 Sr 0.2 MnO 3 perovskite nanorods as efficient electrocatalysts for lithium–air battery. J Power Sources 293:726–733 Lu F, Wang Y, Jin C, Li F, Yang R, Chen F (2015) Microporous La 0.8 Sr 0.2 MnO 3 perovskite nanorods as efficient electrocatalysts for lithium–air battery. J Power Sources 293:726–733
37.
Zurück zum Zitat Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192 Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192
38.
Zurück zum Zitat Wang Q, Xue Y, Sun S, Li S, Miao H, Liu Z (2017) La0. 8Sr0. 2Co1-xMnxO3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries. Electrochim Acta 254:14–24 Wang Q, Xue Y, Sun S, Li S, Miao H, Liu Z (2017) La0. 8Sr0. 2Co1-xMnxO3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries. Electrochim Acta 254:14–24
39.
Zurück zum Zitat Li C, Yu Z, Liu H, Chen K (2018) High surface area LaMnO3 nanoparticles enhancing electrochemical catalytic activity for rechargeable lithium-air batteries. J Phys Chem Solids 113:151–156 Li C, Yu Z, Liu H, Chen K (2018) High surface area LaMnO3 nanoparticles enhancing electrochemical catalytic activity for rechargeable lithium-air batteries. J Phys Chem Solids 113:151–156
40.
Zurück zum Zitat Park HW, Lee DU, Park MG, Ahmed R, Seo MH, Nazar LF, Chen Z (2015) Perovskite–nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries. Chemsuschem 8(6):1058–1065 Park HW, Lee DU, Park MG, Ahmed R, Seo MH, Nazar LF, Chen Z (2015) Perovskite–nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries. Chemsuschem 8(6):1058–1065
41.
Zurück zum Zitat Du Z, Yang P, Wang L, Lu Y, Goodenough JB, Zhang J, Zhang D (2014) Electrocatalytic performances of LaNi1− xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries. J Power Sources 265:91–96 Du Z, Yang P, Wang L, Lu Y, Goodenough JB, Zhang J, Zhang D (2014) Electrocatalytic performances of LaNi1− xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries. J Power Sources 265:91–96
42.
Zurück zum Zitat Yang W, Salim J, Li S, Sun C, Chen L, Goodenough JB, Kim Y (2012) Perovskite Sr 0.95 Ce 0.05 CoO 3− δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. J Mater Chem 22(36):18902–18907 Yang W, Salim J, Li S, Sun C, Chen L, Goodenough JB, Kim Y (2012) Perovskite Sr 0.95 Ce 0.05 CoO 3− δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. J Mater Chem 22(36):18902–18907
43.
Zurück zum Zitat Jung KN, Lee JI, Im WB, Yoon S, Shin KH, Lee JW (2012) Promoting Li 2 O 2 oxidation by an La 1.7 Ca 0.3 Ni 0.75 Cu 0.25 O 4 Layered perovskite in lithium–oxygen batteries. Chem Commun 48(75):9406–9408 Jung KN, Lee JI, Im WB, Yoon S, Shin KH, Lee JW (2012) Promoting Li 2 O 2 oxidation by an La 1.7 Ca 0.3 Ni 0.75 Cu 0.25 O 4 Layered perovskite in lithium–oxygen batteries. Chem Commun 48(75):9406–9408
44.
Zurück zum Zitat Li L, Wang L, Zhang X, Xie M, Wu F, Chen R (2015) Structural and electrochemical study of hierarchical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 7(39):21939–21947 Li L, Wang L, Zhang X, Xie M, Wu F, Chen R (2015) Structural and electrochemical study of hierarchical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 7(39):21939–21947
45.
Zurück zum Zitat Nakayama M, Ikuta H, Uchimoto Y, Wakihara M (2003) Study on the AC impedance spectroscopy for the Li insertion reaction of Li x La1/3NbO3 at the Electrode—Electrolyte Interface. J Phys Chem B 107(38):10603–10607 Nakayama M, Ikuta H, Uchimoto Y, Wakihara M (2003) Study on the AC impedance spectroscopy for the Li insertion reaction of Li x La1/3NbO3 at the Electrode—Electrolyte Interface. J Phys Chem B 107(38):10603–10607
46.
Zurück zum Zitat Henao J, Sotelo O, Casales M, Martinez-Gomez L (2017) Electrochemical performance of the rare-earth perovskite-type oxide La0. 6Sr0. 4Co0. 2Fe0. 8O3 as negative electrode material for Ni/oxide rechargeable batteries. Mater Renew Sustain Energy 6(4):16 Henao J, Sotelo O, Casales M, Martinez-Gomez L (2017) Electrochemical performance of the rare-earth perovskite-type oxide La0. 6Sr0. 4Co0. 2Fe0. 8O3 as negative electrode material for Ni/oxide rechargeable batteries. Mater Renew Sustain Energy 6(4):16
47.
Zurück zum Zitat Kaabi A, Tliha M, Dhahri A, Khaldi C, Fenineche N, Elkedim O, Lamlouli J (2018) Effect of temperature on behavior of perovskite‐type oxide LaGaO3 used as a novel anode material for Ni‐MH secondary batteries. Int J Energy Res Kaabi A, Tliha M, Dhahri A, Khaldi C, Fenineche N, Elkedim O, Lamlouli J (2018) Effect of temperature on behavior of perovskite‐type oxide LaGaO3 used as a novel anode material for Ni‐MH secondary batteries. Int J Energy Res
48.
Zurück zum Zitat Esaka T, Sakaguchi H, Kobayashi S (2004) Hydrogen storage in proton-conductive perovskite-type oxides and their application to nickel–hydrogen batteries. Solid State Ion 166(3–4):351–357 Esaka T, Sakaguchi H, Kobayashi S (2004) Hydrogen storage in proton-conductive perovskite-type oxides and their application to nickel–hydrogen batteries. Solid State Ion 166(3–4):351–357
49.
Zurück zum Zitat Wang Q, Chen Z, Chen Y, Cheng N, Hui Q (2011) Hydrogen storage in perovskite-type oxides ABO3 for Ni/MH battery applications: A density functional investigation. Ind Eng Chem Res 51(37):11821–11827 Wang Q, Chen Z, Chen Y, Cheng N, Hui Q (2011) Hydrogen storage in perovskite-type oxides ABO3 for Ni/MH battery applications: A density functional investigation. Ind Eng Chem Res 51(37):11821–11827
50.
Zurück zum Zitat Deng G, Chen Y, Tao M, Wu C, Shen X, Yang H (2009) Electrochemical properties of La1− xSrxFeO3 (x= 0.2, 0.4) as negative electrode of Ni–MH batteries. Electrochim Acta 54(15):3910–3914 Deng G, Chen Y, Tao M, Wu C, Shen X, Yang H (2009) Electrochemical properties of La1− xSrxFeO3 (x= 0.2, 0.4) as negative electrode of Ni–MH batteries. Electrochim Acta 54(15):3910–3914
51.
Zurück zum Zitat Compton RG, Laborda E, Ward, KR (2014) Understanding voltammetry: simulation of electrode processes Compton RG, Laborda E, Ward, KR (2014) Understanding voltammetry: simulation of electrode processes
52.
Zurück zum Zitat Mohamedi M, Sato T, Itoh T, Umeda M, Uchida I (2002) Cyclic voltammetry and AC Impedance of MmNi3. 55Co0. 75Mn0. 4Al0. 3 alloy single-particle electrode for rechargeable Ni/MH battery. J Electrochem Soc 149(8):A983–A987 Mohamedi M, Sato T, Itoh T, Umeda M, Uchida I (2002) Cyclic voltammetry and AC Impedance of MmNi3. 55Co0. 75Mn0. 4Al0. 3 alloy single-particle electrode for rechargeable Ni/MH battery. J Electrochem Soc 149(8):A983–A987
53.
Zurück zum Zitat Srivastava S, Srivastava ON (1998) Investigations on synthesis, characterization and hydrogenation behaviour of the spin-and thermal-melted versions of LaNi5− xSix (x= 0.1, 0.3, 0.5) hydrogen storage materials. J Alloy Compd 267(1–2):240–245 Srivastava S, Srivastava ON (1998) Investigations on synthesis, characterization and hydrogenation behaviour of the spin-and thermal-melted versions of LaNi5− xSix (x= 0.1, 0.3, 0.5) hydrogen storage materials. J Alloy Compd 267(1–2):240–245
54.
Zurück zum Zitat Kaabi A, Tliha M, Dhahri A, Khaldi C, Lamloumi J (2016) Study of electrochemical performances of perovskite-type oxide LaGaO3 for application as a novel anode material for Ni-MH secondary batteries. Ceram Int 42(10):11682–11686 Kaabi A, Tliha M, Dhahri A, Khaldi C, Lamloumi J (2016) Study of electrochemical performances of perovskite-type oxide LaGaO3 for application as a novel anode material for Ni-MH secondary batteries. Ceram Int 42(10):11682–11686
55.
Zurück zum Zitat Yuan X, Xu N (2001) Comparative study on electrochemical techniques for determination of hydrogen diffusion coefficients in metal hydride electrodes. J Appl Electrochem 31(9):1033–1039 Yuan X, Xu N (2001) Comparative study on electrochemical techniques for determination of hydrogen diffusion coefficients in metal hydride electrodes. J Appl Electrochem 31(9):1033–1039
Metadaten
Titel
Perovskite Materials in Batteries
verfasst von
John Henao
Yilber Pacheco
Lorenzo Martinez-Gomez
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1267-4_6