Skip to main content

2017 | OriginalPaper | Buchkapitel

6. Perovskite-Type MIEC Membranes

verfasst von : Xuefeng Zhu, Weishen Yang

Erschienen in: Mixed Conducting Ceramic Membranes

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Perovskite-type MIEC oxides are the most widely investigated membrane materials since the pioneering works of Teraoka and coworkers in 1985. In the early stage, cobalt-based perovskite oxides attracted much attention of researchers due to their high oxygen permeability. Ba0.5Sr0.5Co0.8Fe0.2O3−δ and La0.6Sr0.4Co0.2Fe0.8O3−δ are the two materials which have been thoroughly investigated in the past decades. Subsequently, the stability of the materials was regarded more important than the permeability for a practical application, and then cobalt-free perovskite membranes were extensively investigated in the past several years. In this chapter, the development of the cobalt-based and cobalt-free perovskite membranes is introduced in detail, and the influence of doping on oxygen permeability and stability is concerned.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kruidhof H, Bouwmeester HJM, van Doorn RHE, Burggraaf AJ (1993) Influence of order–disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics 63–65:816–822CrossRef Kruidhof H, Bouwmeester HJM, van Doorn RHE, Burggraaf AJ (1993) Influence of order–disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics 63–65:816–822CrossRef
2.
Zurück zum Zitat Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172:177–188CrossRef Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172:177–188CrossRef
3.
Zurück zum Zitat Teraoka Y, Zhang HM, Furukawa S, Yamazoe N (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 11:1743–1746CrossRef Teraoka Y, Zhang HM, Furukawa S, Yamazoe N (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 11:1743–1746CrossRef
4.
Zurück zum Zitat Teraoka Y, Nobunaga T, Yamazoe N (1988) Effect of cation substitution on the oxygen semipermeability of perovskite-type oxides. Chem Lett 3:503–506CrossRef Teraoka Y, Nobunaga T, Yamazoe N (1988) Effect of cation substitution on the oxygen semipermeability of perovskite-type oxides. Chem Lett 3:503–506CrossRef
5.
Zurück zum Zitat Kharton VV, Naumovich EN, Kovalevsky AV, Viskup AP, Figueiredo FM, Bashmakov IA, Marques FMB (2000) Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni) IV. Effect of preparation method on oxygen transport in LaCoO3−δ. Solid State Ionics 138:135–148CrossRef Kharton VV, Naumovich EN, Kovalevsky AV, Viskup AP, Figueiredo FM, Bashmakov IA, Marques FMB (2000) Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni) IV. Effect of preparation method on oxygen transport in LaCoO3−δ. Solid State Ionics 138:135–148CrossRef
6.
Zurück zum Zitat Kharton VV, Kovalevsky AV, Tikhonovich VN, Naumovich EN, Viskup AP (1998) Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni) II. Oxygen permeation through Cr- and Ni-substituted LaCoO3. Solid State Ionics 110:53–60CrossRef Kharton VV, Kovalevsky AV, Tikhonovich VN, Naumovich EN, Viskup AP (1998) Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni) II. Oxygen permeation through Cr- and Ni-substituted LaCoO3. Solid State Ionics 110:53–60CrossRef
7.
Zurück zum Zitat Yaremchenko AA, Kharton VV, Viskup AP, Naumovich EN, Tikhonovich VN, Lapchuk NM (1999) Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni). V. Oxygen permeability of Mg-doped La(Ga, Co)O3−δ perovskites. Solid State Ionics 120:65–74CrossRef Yaremchenko AA, Kharton VV, Viskup AP, Naumovich EN, Tikhonovich VN, Lapchuk NM (1999) Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni). V. Oxygen permeability of Mg-doped La(Ga, Co)O3−δ perovskites. Solid State Ionics 120:65–74CrossRef
8.
Zurück zum Zitat Cherry M, Islam MS, Catlow CRA (1995) Oxygen ion migration in perovskite-type oxides. J Solid State Chem 118:125–132CrossRef Cherry M, Islam MS, Catlow CRA (1995) Oxygen ion migration in perovskite-type oxides. J Solid State Chem 118:125–132CrossRef
9.
Zurück zum Zitat Islam MS, Davies RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93CrossRef Islam MS, Davies RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93CrossRef
10.
Zurück zum Zitat Islam MS (2002) Computer modelling of defects and transport in perovskite oxides. Solid State Ionics 154:75–85CrossRef Islam MS (2002) Computer modelling of defects and transport in perovskite oxides. Solid State Ionics 154:75–85CrossRef
11.
Zurück zum Zitat Tsai CY, Dixon AG, Ma YH, Moser WR, Pascucci MR (1998) Dense Perovskite, La1−xA′xFe1−yCoyO3−δ (A′ = Ba, Sr, Ca), membrane synthesis, applications, and characterization. J Am Ceram Soc 81:1437–1444CrossRef Tsai CY, Dixon AG, Ma YH, Moser WR, Pascucci MR (1998) Dense Perovskite, La1−xA′xFe1−yCoyO3−δ (A′ = Ba, Sr, Ca), membrane synthesis, applications, and characterization. J Am Ceram Soc 81:1437–1444CrossRef
12.
Zurück zum Zitat Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) Electrochemical properties of mixed conducting perovskites La1−xMxCo1−yFeyO3−δ (M = Sr, Ba, Ca). J Electrochem Soc 143:2722–2729CrossRef Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) Electrochemical properties of mixed conducting perovskites La1−xMxCo1−yFeyO3−δ (M = Sr, Ba, Ca). J Electrochem Soc 143:2722–2729CrossRef
13.
Zurück zum Zitat Hayashi H, Inaba H, Matsuyama M, Lan NG, Dokiya M, Tagawa H (1999) Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 122:1–15CrossRef Hayashi H, Inaba H, Matsuyama M, Lan NG, Dokiya M, Tagawa H (1999) Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 122:1–15CrossRef
14.
Zurück zum Zitat Li SG, Jin WQ, Huang P, Xu N, Shi J (1999) Comparison of oxygen permeability and stability of perovskite type La0.2A0.8Co0.2Fe0.8O3−δ (A = Sr, Ba, Ca) membranes. Ind Eng Chem Res 38:2963–2972CrossRef Li SG, Jin WQ, Huang P, Xu N, Shi J (1999) Comparison of oxygen permeability and stability of perovskite type La0.2A0.8Co0.2Fe0.8O3−δ (A = Sr, Ba, Ca) membranes. Ind Eng Chem Res 38:2963–2972CrossRef
15.
Zurück zum Zitat Kovalevsky AV, Kharton VV, Tikhonovich VN, Naumovich EN, Tonoyan AA, Reut OP, Boginsky LS (1998) Oxygen permeation through Sr(Ln)CoO3−δ (Ln = La, Nd, Sm, Gd) ceramic membranes. Mater Sci Eng B-Solid State Mater Adv Technol 52:105–116CrossRef Kovalevsky AV, Kharton VV, Tikhonovich VN, Naumovich EN, Tonoyan AA, Reut OP, Boginsky LS (1998) Oxygen permeation through Sr(Ln)CoO3−δ (Ln = La, Nd, Sm, Gd) ceramic membranes. Mater Sci Eng B-Solid State Mater Adv Technol 52:105–116CrossRef
16.
Zurück zum Zitat Lane JA, Benson SJ, Waller D, Kilner JA (1999) Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3−δ. Solid State Ionics 121:201–208CrossRef Lane JA, Benson SJ, Waller D, Kilner JA (1999) Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3−δ. Solid State Ionics 121:201–208CrossRef
17.
Zurück zum Zitat Bouwmeester HJM, Den Otter MW, Boukamp BA (2004) Oxygen transport in La0.6Sr0.4Co1−yFeyO3−δ. J Solid State Electrochem 8:599–605CrossRef Bouwmeester HJM, Den Otter MW, Boukamp BA (2004) Oxygen transport in La0.6Sr0.4Co1−yFeyO3−δ. J Solid State Electrochem 8:599–605CrossRef
18.
Zurück zum Zitat Xu SJ, Thomson WJ (1999) Oxygen permeation rates through ion-conducting perovskite membranes. Chem Eng Sci 54:3839–3850CrossRef Xu SJ, Thomson WJ (1999) Oxygen permeation rates through ion-conducting perovskite membranes. Chem Eng Sci 54:3839–3850CrossRef
19.
Zurück zum Zitat Tai LW, Nasrallah MM, Anderson HU (1995) Thermochemical stability, electrical conductivity, and seebeck coefficient of Sr-doped LaCo0.2Fe0.8O3−δ. J Solid State Chem 118:117–124CrossRef Tai LW, Nasrallah MM, Anderson HU (1995) Thermochemical stability, electrical conductivity, and seebeck coefficient of Sr-doped LaCo0.2Fe0.8O3−δ. J Solid State Chem 118:117–124CrossRef
20.
Zurück zum Zitat Liu Y, Zhu XF, Yang WS (2016) Stability of sulfate doped SrCoO3−δ MIEC membrane. J Membr Sci 501:53–59CrossRef Liu Y, Zhu XF, Yang WS (2016) Stability of sulfate doped SrCoO3−δ MIEC membrane. J Membr Sci 501:53–59CrossRef
21.
Zurück zum Zitat Nagai T, Ito W, Sakon T (2007) Relationship between cation substitution and stability of perovskite structure in SrCoO3−δ-based mixed conductors. Solid State Ionics 177:3433–3444CrossRef Nagai T, Ito W, Sakon T (2007) Relationship between cation substitution and stability of perovskite structure in SrCoO3−δ-based mixed conductors. Solid State Ionics 177:3433–3444CrossRef
22.
Zurück zum Zitat Zeng PY, Shao ZP, Liu SM, Xu ZP (2009) Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCo0.95M0.05O3−δ perovskite. Sep Purif Technol 67:304–311CrossRef Zeng PY, Shao ZP, Liu SM, Xu ZP (2009) Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCo0.95M0.05O3−δ perovskite. Sep Purif Technol 67:304–311CrossRef
23.
Zurück zum Zitat Chen XZ, Liu H, Wei YY (2011) Tantalum stabilized SrCoO3−δ perovskite membrane for oxygen separation. J Membr Sci 368:159–164CrossRef Chen XZ, Liu H, Wei YY (2011) Tantalum stabilized SrCoO3−δ perovskite membrane for oxygen separation. J Membr Sci 368:159–164CrossRef
24.
Zurück zum Zitat Kharton VV, Li SB, Kovalevsky AV, Naumovich EN (1997) Oxygen permeability of perovskites in the system SrCoO3−δ-SrTiO3. Solid State Ionics 96:141–151CrossRef Kharton VV, Li SB, Kovalevsky AV, Naumovich EN (1997) Oxygen permeability of perovskites in the system SrCoO3−δ-SrTiO3. Solid State Ionics 96:141–151CrossRef
25.
Zurück zum Zitat Zhang K, Ran R, Ge L, Shao ZP, Jin WQ, Xu NP (2009) Double-site yttria-doped Sr1−xYxCo1−yYyO3−δ perovskite oxides as oxygen semi-permeable membranes. J Alloys Compd 474:477–483CrossRef Zhang K, Ran R, Ge L, Shao ZP, Jin WQ, Xu NP (2009) Double-site yttria-doped Sr1−xYxCo1−yYyO3−δ perovskite oxides as oxygen semi-permeable membranes. J Alloys Compd 474:477–483CrossRef
26.
Zurück zum Zitat Zhang K, Ran R, Ge L, Shao ZP, Jin WQ, Xu NP (2008) Systematic investigation on new SrCo1−yNbyO3−δ ceramic membranes with high oxygen semi-permeability. J Membr Sci 323:436–443CrossRef Zhang K, Ran R, Ge L, Shao ZP, Jin WQ, Xu NP (2008) Systematic investigation on new SrCo1−yNbyO3−δ ceramic membranes with high oxygen semi-permeability. J Membr Sci 323:436–443CrossRef
27.
Zurück zum Zitat McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics 177:1737–1742CrossRef McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics 177:1737–1742CrossRef
28.
Zurück zum Zitat Wang ZF, Zhao HL, Xu NS, Shen YN, Ding WZ, Lu XG, Li FS (2011) Electrical conductivity and structural stability of SrCo1−xFexO3−δ. J Phys Chem Solids 72:50–55CrossRef Wang ZF, Zhao HL, Xu NS, Shen YN, Ding WZ, Lu XG, Li FS (2011) Electrical conductivity and structural stability of SrCo1−xFexO3−δ. J Phys Chem Solids 72:50–55CrossRef
29.
Zurück zum Zitat Shin MJ, Yu JH (2012) Oxygen transport of A-site deficient Sr1−xFe0.5Co0.5O3−δ (x = 0–0.3) membranes. J Membr Sci 401:40–47CrossRef Shin MJ, Yu JH (2012) Oxygen transport of A-site deficient Sr1−xFe0.5Co0.5O3−δ (x = 0–0.3) membranes. J Membr Sci 401:40–47CrossRef
30.
Zurück zum Zitat He YF, Zhu XF, Guo ZF, Yang WS (2010) Phase transitions in Sr1+xCo0.8Fe0.2O3−δ oxides. Mater Lett 64:1618–1621CrossRef He YF, Zhu XF, Guo ZF, Yang WS (2010) Phase transitions in Sr1+xCo0.8Fe0.2O3−δ oxides. Mater Lett 64:1618–1621CrossRef
31.
Zurück zum Zitat Liu HY, Zhu XF, Cong Y, Zhang TY, Yang WS (2012) Remarkable dependence of electrochemical performance of SrCo0.8Fe0.2O3−δ on A-site nonstoichiometry. Phys Chem Chem Phys 14:7234–7239CrossRef Liu HY, Zhu XF, Cong Y, Zhang TY, Yang WS (2012) Remarkable dependence of electrochemical performance of SrCo0.8Fe0.2O3−δ on A-site nonstoichiometry. Phys Chem Chem Phys 14:7234–7239CrossRef
32.
Zurück zum Zitat Qiu L, Lee TH, Liu LM, Yang YL, Jacobson AJ (1995) Oxygen permeation studies of SrCo0.8Fe0.2O3−δ. Solid State Ionics 76:321–329CrossRef Qiu L, Lee TH, Liu LM, Yang YL, Jacobson AJ (1995) Oxygen permeation studies of SrCo0.8Fe0.2O3−δ. Solid State Ionics 76:321–329CrossRef
33.
Zurück zum Zitat Lee TH, Yang YL, Jacobsona AJ, Abelesa B, Zhou M (1997) Oxygen permeation in dense SrCo0.8Fe0.2O3−δ membranes: surface exchange kinetics versus bulk diffusion. Solid State Ionics 100:77–85CrossRef Lee TH, Yang YL, Jacobsona AJ, Abelesa B, Zhou M (1997) Oxygen permeation in dense SrCo0.8Fe0.2O3−δ membranes: surface exchange kinetics versus bulk diffusion. Solid State Ionics 100:77–85CrossRef
34.
Zurück zum Zitat Yi JX, Feng SJ, Zeng Q, Chen CS (2015) Structure, electrical and oxygen transport properties of Fe-doped SrCoO3−δ perovskites. Chin J Chem Phys 28:189–192CrossRef Yi JX, Feng SJ, Zeng Q, Chen CS (2015) Structure, electrical and oxygen transport properties of Fe-doped SrCoO3−δ perovskites. Chin J Chem Phys 28:189–192CrossRef
35.
Zurück zum Zitat Yang L, Tan L, Gu XH, Jin WQ, Zhang LX, Xu NP (2003) A new series of Sr(Co, Fe, Zr)O3−δ perovskite-type membrane materials for oxygen permeation. Ind Eng Chem Res 42:2299–2305CrossRef Yang L, Tan L, Gu XH, Jin WQ, Zhang LX, Xu NP (2003) A new series of Sr(Co, Fe, Zr)O3−δ perovskite-type membrane materials for oxygen permeation. Ind Eng Chem Res 42:2299–2305CrossRef
36.
Zurück zum Zitat Lu H, Son SH, Kim JP, Park JH (2011) A Fe/Nb co-doped Sr(Co0.8Fe0.1Nb0.1)O3−δ perovskite oxide for air separation: structural, sintering and oxygen permeating properties. Mater Lett 65:702–704CrossRef Lu H, Son SH, Kim JP, Park JH (2011) A Fe/Nb co-doped Sr(Co0.8Fe0.1Nb0.1)O3−δ perovskite oxide for air separation: structural, sintering and oxygen permeating properties. Mater Lett 65:702–704CrossRef
37.
Zurück zum Zitat Zhao HL, Cheng YF, Xu NS, Li Y, Li FS, Ding WZ, Lu XG (2010) Oxygen permeability of A-site nonstoichiometric BaxCo0.7Fe0.2Nb0.1O3−δ perovskite oxides. Solid State Ionics 181:354–358CrossRef Zhao HL, Cheng YF, Xu NS, Li Y, Li FS, Ding WZ, Lu XG (2010) Oxygen permeability of A-site nonstoichiometric BaxCo0.7Fe0.2Nb0.1O3−δ perovskite oxides. Solid State Ionics 181:354–358CrossRef
38.
Zurück zum Zitat Luo HX, Tian BB, Wei YY, Wang HH, Jiang HQ, Caro J (2010) Oxygen permeability and structural stability of a novel Tantalum-doped perovskite BaCo0.7Fe0.2Ta0.1O3−δ. AIChE J 56:604–610 Luo HX, Tian BB, Wei YY, Wang HH, Jiang HQ, Caro J (2010) Oxygen permeability and structural stability of a novel Tantalum-doped perovskite BaCo0.7Fe0.2Ta0.1O3−δ. AIChE J 56:604–610
39.
Zurück zum Zitat Shao ZP, Xiong GX, Cong Y, Yang WS (2000) Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8−xO3−δ ceramic membranes. J Membr Sci 164:167–174CrossRef Shao ZP, Xiong GX, Cong Y, Yang WS (2000) Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8−xO3−δ ceramic membranes. J Membr Sci 164:167–174CrossRef
40.
Zurück zum Zitat Tong JH (2001) Highly stable oxygen permeation membrane material and its application in the membrane reactors of the partial oxidation of methane to synthesis gas. Dissertation, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Tong JH (2001) Highly stable oxygen permeation membrane material and its application in the membrane reactors of the partial oxidation of methane to synthesis gas. Dissertation, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
41.
Zurück zum Zitat Shao ZP (2000) Mixed oxygen ionic and electronic conducting membrane and its application in the partial oxidation of methane to synthesis gas process. Dissertation, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Shao ZP (2000) Mixed oxygen ionic and electronic conducting membrane and its application in the partial oxidation of methane to synthesis gas process. Dissertation, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
42.
Zurück zum Zitat Luo HX, Wei YY, Jiang HQ, Yuan WH, Lv YX, Caro J, Wang HH (2010) Performance of a ceramic membrane reactor with high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas. J Membr Sci 350:154–160CrossRef Luo HX, Wei YY, Jiang HQ, Yuan WH, Lv YX, Caro J, Wang HH (2010) Performance of a ceramic membrane reactor with high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas. J Membr Sci 350:154–160CrossRef
43.
Zurück zum Zitat Li QM, Zhu XF, Yang WS (2010) Investigation of structure and oxygen permeability of Ba–Ce–Co–Fe–O system. Mater Res Bull 45:1112–1117CrossRef Li QM, Zhu XF, Yang WS (2010) Investigation of structure and oxygen permeability of Ba–Ce–Co–Fe–O system. Mater Res Bull 45:1112–1117CrossRef
44.
Zurück zum Zitat Cheng HW, Lu XG, Hu DH, Zhang YW, Ding WZ, Zhao HL (2011) Hydrogen production by catalytic partial oxidation of coke oven gas in BaCo0.7Fe0.2Nb0.1O3−δ membranes with surface modification. Int J Hydrog Energy 36:528–538CrossRef Cheng HW, Lu XG, Hu DH, Zhang YW, Ding WZ, Zhao HL (2011) Hydrogen production by catalytic partial oxidation of coke oven gas in BaCo0.7Fe0.2Nb0.1O3−δ membranes with surface modification. Int J Hydrog Energy 36:528–538CrossRef
45.
Zurück zum Zitat Yang ZB, Ding WZ, Zhang YY, Lu XG, Zhang YW, Shen PJ (2010) Catalytic partial oxidation of coke oven gas to syngas in an oxygen permeation membrane reactor combined with NiO/MgO catalyst. Int J Hydrog Energy 35:6239–6247CrossRef Yang ZB, Ding WZ, Zhang YY, Lu XG, Zhang YW, Shen PJ (2010) Catalytic partial oxidation of coke oven gas to syngas in an oxygen permeation membrane reactor combined with NiO/MgO catalyst. Int J Hydrog Energy 35:6239–6247CrossRef
46.
Zurück zum Zitat Tong JH, Yang WS, Cai R, Zhu BC, Lin LW (2002) Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas. Catal Lett 78:129–137CrossRef Tong JH, Yang WS, Cai R, Zhu BC, Lin LW (2002) Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas. Catal Lett 78:129–137CrossRef
47.
Zurück zum Zitat Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173CrossRef Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173CrossRef
48.
Zurück zum Zitat Bucher E, Egger A, Ried P, Sitte W, Holtappels P (2008) Oxygen nonstoichiometry and exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics 179:1032–1035CrossRef Bucher E, Egger A, Ried P, Sitte W, Holtappels P (2008) Oxygen nonstoichiometry and exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics 179:1032–1035CrossRef
49.
Zurück zum Zitat Wang HH, Cong Y, Yang WS (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen permeable membrane. J Membr Sci 210:259–271CrossRef Wang HH, Cong Y, Yang WS (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen permeable membrane. J Membr Sci 210:259–271CrossRef
50.
Zurück zum Zitat Zhu XF, Liu HY, Cong Y, Yang WS (2012) Permeation model and experimental investigation of mixed conducting membranes. AIChE J 58:1744–1754CrossRef Zhu XF, Liu HY, Cong Y, Yang WS (2012) Permeation model and experimental investigation of mixed conducting membranes. AIChE J 58:1744–1754CrossRef
51.
Zurück zum Zitat Chen DJ, Shao ZP (2001) Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ mixed conductor. Int J Hydrog Energy 36:6948–6956CrossRef Chen DJ, Shao ZP (2001) Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ mixed conductor. Int J Hydrog Energy 36:6948–6956CrossRef
52.
Zurück zum Zitat Girdauskaite E, Ullmann H, Vashook VV, Guth U, Caraman GB, Bucher E, Sitte W (2008) Oxygen transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and Ca0.5Sr0.5Mn0.8Fe0.2O3−δ obtained from permeation and conductivity relaxation experiments. Solid State Ionics 179:385–392CrossRef Girdauskaite E, Ullmann H, Vashook VV, Guth U, Caraman GB, Bucher E, Sitte W (2008) Oxygen transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and Ca0.5Sr0.5Mn0.8Fe0.2O3−δ obtained from permeation and conductivity relaxation experiments. Solid State Ionics 179:385–392CrossRef
53.
Zurück zum Zitat Hong WK, Choi GM (2010) Oxygen permeation of BSCF membrane with varying thickness and surface coating. J Membr Sci 346:353–360CrossRef Hong WK, Choi GM (2010) Oxygen permeation of BSCF membrane with varying thickness and surface coating. J Membr Sci 346:353–360CrossRef
54.
Zurück zum Zitat Haworth PF, Smart S, Serra JM, Diniz da Costa JC (2012) Combined investigation of bulk diffusion and surface exchange parameters of silver catalyst coated yttrium-doped BSCF membranes. Phys Chem Chem Phys 14:9104–9111CrossRef Haworth PF, Smart S, Serra JM, Diniz da Costa JC (2012) Combined investigation of bulk diffusion and surface exchange parameters of silver catalyst coated yttrium-doped BSCF membranes. Phys Chem Chem Phys 14:9104–9111CrossRef
55.
Zurück zum Zitat Fu YP, Subardi A, Hsieh MY, Chang WK (2016) Electrochemical properties of La0.5Sr0.5Co0.8M0.2O3−δ (M = Mn, Fe, Ni, Cu) perovskite cathodes for IT-SOFCs. J Am Ceram Soc 99:1345–1352CrossRef Fu YP, Subardi A, Hsieh MY, Chang WK (2016) Electrochemical properties of La0.5Sr0.5Co0.8M0.2O3−δ (M = Mn, Fe, Ni, Cu) perovskite cathodes for IT-SOFCs. J Am Ceram Soc 99:1345–1352CrossRef
56.
Zurück zum Zitat Katsukia M, Wang SR, Dokiya M, Hashimoto T (2003) High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ oxygen nonstoichiometry and chemical diffusion constant. Solid State Ionics 156:453–461CrossRef Katsukia M, Wang SR, Dokiya M, Hashimoto T (2003) High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ oxygen nonstoichiometry and chemical diffusion constant. Solid State Ionics 156:453–461CrossRef
57.
Zurück zum Zitat Subardi A, Cheng MH, Fu YP (2014) Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+δ cathode for intermediate solid oxide fuel cells. Int J Hydrog Energy 39:20783–20790CrossRef Subardi A, Cheng MH, Fu YP (2014) Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+δ cathode for intermediate solid oxide fuel cells. Int J Hydrog Energy 39:20783–20790CrossRef
58.
Zurück zum Zitat Cox-Galhotra RA, McIntosh S (2012) Electrical conductivity relaxation of polycrystalline PrBaCo2O5+δ thin films. Solid State Ionics 228:14–18CrossRef Cox-Galhotra RA, McIntosh S (2012) Electrical conductivity relaxation of polycrystalline PrBaCo2O5+δ thin films. Solid State Ionics 228:14–18CrossRef
59.
Zurück zum Zitat Zhu XF, Sun SM, Cong Y, Yang WS (2009) Operation of perovskite membrane under vacuum and elevated pressures for high-purity oxygen production. J Membr Sci 345:47–52CrossRef Zhu XF, Sun SM, Cong Y, Yang WS (2009) Operation of perovskite membrane under vacuum and elevated pressures for high-purity oxygen production. J Membr Sci 345:47–52CrossRef
60.
Zurück zum Zitat Leo A, Smart S, Liu SM, Diniz da Costa JC (2011) High performance perovskite hollow fibres for oxygen separation. J Membr Sci 368:64–68CrossRef Leo A, Smart S, Liu SM, Diniz da Costa JC (2011) High performance perovskite hollow fibres for oxygen separation. J Membr Sci 368:64–68CrossRef
61.
Zurück zum Zitat Baumann S, Serra JM, Lobera MP, Escolástico S, Schulze-Küppers F, Meulenberga WA (2011) Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sci 377:198–205CrossRef Baumann S, Serra JM, Lobera MP, Escolástico S, Schulze-Küppers F, Meulenberga WA (2011) Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sci 377:198–205CrossRef
62.
Zurück zum Zitat Švarcová S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T (2008) Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178:1787–1791CrossRef Švarcová S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T (2008) Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178:1787–1791CrossRef
63.
Zurück zum Zitat Arnold M, Gesing TM, Martynczuk J, Feldhoff A (2008) Correlation of the formation and the decomposition process of the BSCF perovskite at intermediate temperatures. Chem Mater 20:5851–5858CrossRef Arnold M, Gesing TM, Martynczuk J, Feldhoff A (2008) Correlation of the formation and the decomposition process of the BSCF perovskite at intermediate temperatures. Chem Mater 20:5851–5858CrossRef
64.
Zurück zum Zitat Mueller DN, De Souza RA, Weirich TE, Roehrens D, Mayer J, Martin M (2010) A kinetic study of the decomposition of the cubic perovskite-type oxide BaxSr1−xCo0.8Fe0.2O3−δ (BSCF) (x = 0.1 and 0.5). Phys Chem Chem Phys 12:10320–10328CrossRef Mueller DN, De Souza RA, Weirich TE, Roehrens D, Mayer J, Martin M (2010) A kinetic study of the decomposition of the cubic perovskite-type oxide BaxSr1−xCo0.8Fe0.2O3−δ (BSCF) (x = 0.1 and 0.5). Phys Chem Chem Phys 12:10320–10328CrossRef
65.
Zurück zum Zitat Efimov K, Xu Q, Feldhoff A (2010) Transmission electron microscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite decomposition at intermediate temperatures. Chem Mater 22:5866–5875CrossRef Efimov K, Xu Q, Feldhoff A (2010) Transmission electron microscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite decomposition at intermediate temperatures. Chem Mater 22:5866–5875CrossRef
66.
Zurück zum Zitat Müller P, Störmer H, Dieterle L, Niedrig C, Ivers-Tiffée E, Gerthsen D (2012) Decomposition pathway of cubic Ba0.5Sr0.5Co0.8Fe0.2O3−δ between 700 °C and 1000 °C analyzed by electron microscopic techniques. Solid State Ionics 206:57–66CrossRef Müller P, Störmer H, Dieterle L, Niedrig C, Ivers-Tiffée E, Gerthsen D (2012) Decomposition pathway of cubic Ba0.5Sr0.5Co0.8Fe0.2O3−δ between 700 °C and 1000 °C analyzed by electron microscopic techniques. Solid State Ionics 206:57–66CrossRef
67.
Zurück zum Zitat Müller P, Störmer H, Meffert M, Dieterle L, Niedrig C, Wagner SF, Ivers-Tiffée E, Gerthsen D (2013) Secondary phase formation in Ba0.5Sr0.5Co0.8Fe0.2O3−δ studied by electron microscopy. Chem Mater 25:564–573CrossRef Müller P, Störmer H, Meffert M, Dieterle L, Niedrig C, Wagner SF, Ivers-Tiffée E, Gerthsen D (2013) Secondary phase formation in Ba0.5Sr0.5Co0.8Fe0.2O3−δ studied by electron microscopy. Chem Mater 25:564–573CrossRef
68.
Zurück zum Zitat Sun J, Yang M, Li G, Yang T, Liao F, Wang Y, Xiong M, Lin J (2006) New barium cobaltite series Ban+1ConO3n+3(Co8O8): intergrowth structure containing perovskite and CdI2-type layers. Inorg Chem 45:9151–9153CrossRef Sun J, Yang M, Li G, Yang T, Liao F, Wang Y, Xiong M, Lin J (2006) New barium cobaltite series Ban+1ConO3n+3(Co8O8): intergrowth structure containing perovskite and CdI2-type layers. Inorg Chem 45:9151–9153CrossRef
69.
Zurück zum Zitat Liu Y, Zhu XF, Li MR, O’Hayre RP, Yang WS (2015) Nanoparticles at grain boundaries inhibit the phase transformation of perovskite membrane. Nano Lett 15:7678–7683CrossRef Liu Y, Zhu XF, Li MR, O’Hayre RP, Yang WS (2015) Nanoparticles at grain boundaries inhibit the phase transformation of perovskite membrane. Nano Lett 15:7678–7683CrossRef
70.
Zurück zum Zitat Liang FY, Jiang HQ, Luo HX, Caro J, Feldhoff A (2011) Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3−δ tube membrane in high-purity oxygen production. Chem Mater 23:4765–4772CrossRef Liang FY, Jiang HQ, Luo HX, Caro J, Feldhoff A (2011) Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3−δ tube membrane in high-purity oxygen production. Chem Mater 23:4765–4772CrossRef
71.
Zurück zum Zitat Ishihara T, Yamada T, Arikawa H, Nishiguchi H, Takita Y (2000) Mixed electronic–oxide ionic conductivity and oxygen permeating property of Fe-, Co- or Ni-doped LaGaO3 perovskite oxide. Solid State Ionics 135:631–636CrossRef Ishihara T, Yamada T, Arikawa H, Nishiguchi H, Takita Y (2000) Mixed electronic–oxide ionic conductivity and oxygen permeating property of Fe-, Co- or Ni-doped LaGaO3 perovskite oxide. Solid State Ionics 135:631–636CrossRef
72.
Zurück zum Zitat MacKay R, Schwartz M, Sammells AF (2003) Materials and methods for the preparation of oxygen from air. US Patent 6,592,782, 15 July 2003 MacKay R, Schwartz M, Sammells AF (2003) Materials and methods for the preparation of oxygen from air. US Patent 6,592,782, 15 July 2003
73.
Zurück zum Zitat Geffroy PM, Fouletier J, Richet N, Chartier T, Reichmann M (2014) Effect of cation substitution in the A site on the oxygen semi-permeation flux in La0.5A0.5Fe0.7Ga0.3O3−δ and La0.5A0.5Fe0.7Co0.3O3−δ dense perovskite membranes with A = Ca, Sr and Ba (part I). J Power Sources 261:175–183CrossRef Geffroy PM, Fouletier J, Richet N, Chartier T, Reichmann M (2014) Effect of cation substitution in the A site on the oxygen semi-permeation flux in La0.5A0.5Fe0.7Ga0.3O3−δ and La0.5A0.5Fe0.7Co0.3O3−δ dense perovskite membranes with A = Ca, Sr and Ba (part I). J Power Sources 261:175–183CrossRef
74.
Zurück zum Zitat Lee KS, Lee S, Kim JW, Woo SK (2002) Enhancement of oxygen permeation by La0.6Sr0.4CoO3 − δ coating in La0.7Sr0.3Ga0.6Fe0.4O3 − δ membrane. Desalination 147:439–444CrossRef Lee KS, Lee S, Kim JW, Woo SK (2002) Enhancement of oxygen permeation by La0.6Sr0.4CoO3 − δ coating in La0.7Sr0.3Ga0.6Fe0.4O3 − δ membrane. Desalination 147:439–444CrossRef
75.
Zurück zum Zitat Zhu XF, Wang HH, Yang WS (2004) Novel cobalt-free oxygen permeable membrane. Chem Commun 9:1130–1132CrossRef Zhu XF, Wang HH, Yang WS (2004) Novel cobalt-free oxygen permeable membrane. Chem Commun 9:1130–1132CrossRef
76.
Zurück zum Zitat Zhu XF, Wang HH, Cong Y, Yang WS (2006) Oxygen permeability and structural stability of BaCe0.15Fe0.85O3 − δ membranes. J Membr Sci 283:38–44CrossRef Zhu XF, Wang HH, Cong Y, Yang WS (2006) Oxygen permeability and structural stability of BaCe0.15Fe0.85O3 − δ membranes. J Membr Sci 283:38–44CrossRef
77.
Zurück zum Zitat Zhu XF, Cong Y, Yang WS (2006) Effects of synthesis methods on the oxygen permeable BaCe0.15Fe0.85O3 − δ ceramic membranes. J Membr Sci 283:158–163CrossRef Zhu XF, Cong Y, Yang WS (2006) Effects of synthesis methods on the oxygen permeable BaCe0.15Fe0.85O3 − δ ceramic membranes. J Membr Sci 283:158–163CrossRef
78.
Zurück zum Zitat Zhu XF, Wang HH, Cong Y, Yang WS (2006) Structural stability and oxygen permeation of cerium light doped BaFeO3 − δ ceramic membranes. Solid State Ionics 117:2917–2921CrossRef Zhu XF, Wang HH, Cong Y, Yang WS (2006) Structural stability and oxygen permeation of cerium light doped BaFeO3 − δ ceramic membranes. Solid State Ionics 117:2917–2921CrossRef
79.
Zurück zum Zitat Zhu XF, Wang HH, Cong Y, Yang WS (2006) Partial oxidization of methane to syngas in BaCe0.15Fe0.85O3 − δ membrane reactor. Catal Lett 111:179–185CrossRef Zhu XF, Wang HH, Cong Y, Yang WS (2006) Partial oxidization of methane to syngas in BaCe0.15Fe0.85O3 − δ membrane reactor. Catal Lett 111:179–185CrossRef
80.
Zurück zum Zitat Watanabe K, Takauchi D, Yuasa M, Kida T, Shimanoe K, Teraoka Y, Yamazoe N (2009) Oxygen permeation properties of Co-free perovskite-type oxide membranes based on BaFe1 − yZryO3 − δ. J Electrochem Soc 156:E81–E85CrossRef Watanabe K, Takauchi D, Yuasa M, Kida T, Shimanoe K, Teraoka Y, Yamazoe N (2009) Oxygen permeation properties of Co-free perovskite-type oxide membranes based on BaFe1 − yZryO3 − δ. J Electrochem Soc 156:E81–E85CrossRef
81.
Zurück zum Zitat Kida T, Takauchi D, Watanabe K, Yuasa M, Shimanoe K, Teraoka Y, Yamazoe N (2009) Oxygen permeation properties of partially A-Site substituted BaFeO3 − δ perovskites. J Electrochem Soc 156:E187–E191CrossRef Kida T, Takauchi D, Watanabe K, Yuasa M, Shimanoe K, Teraoka Y, Yamazoe N (2009) Oxygen permeation properties of partially A-Site substituted BaFeO3 − δ perovskites. J Electrochem Soc 156:E187–E191CrossRef
82.
Zurück zum Zitat Liu XT, Zhao HL, Yang JY, Li Y, Chen T, Lu XG, Ding WZ, Li FS (2011) Lattice characteristics, structure stability and oxygen permeability of BaFe1−xYxO3−δ ceramic membranes. J Membr Sci 383:235–240CrossRef Liu XT, Zhao HL, Yang JY, Li Y, Chen T, Lu XG, Ding WZ, Li FS (2011) Lattice characteristics, structure stability and oxygen permeability of BaFe1−xYxO3−δ ceramic membranes. J Membr Sci 383:235–240CrossRef
83.
Zurück zum Zitat Watenabe K, Yuasa M, Kida T, Teraoka Y, Yamazoe N, Shimanoe K (2010) High-performance oxygen-permeable membranes with an asymmetric structure using Ba0.95La0.05FeO3 − δ perovskite-type oxide. Adv Mater 22:2367–2370CrossRef Watenabe K, Yuasa M, Kida T, Teraoka Y, Yamazoe N, Shimanoe K (2010) High-performance oxygen-permeable membranes with an asymmetric structure using Ba0.95La0.05FeO3 − δ perovskite-type oxide. Adv Mater 22:2367–2370CrossRef
84.
Zurück zum Zitat Dong FF, Chen YB, Ran R, Chen DJ, Tadé MO, Liu SM, Shao ZP (2013) BaNb0.05Fe0.95O3 − δ as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells. J Mater Chem A 1:9781–9791CrossRef Dong FF, Chen YB, Ran R, Chen DJ, Tadé MO, Liu SM, Shao ZP (2013) BaNb0.05Fe0.95O3 − δ as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells. J Mater Chem A 1:9781–9791CrossRef
85.
Zurück zum Zitat Bréard Y, Michel C, Hervieu M, Studer F, Maignan A, Raveau BB (2002) Large oxygen deficiency in a n = 2 member of the RP series: Sr3FeCoO7 − x (x ⩽ 1.55). Chem Mater 14:3128–3135CrossRef Bréard Y, Michel C, Hervieu M, Studer F, Maignan A, Raveau BB (2002) Large oxygen deficiency in a n = 2 member of the RP series: Sr3FeCoO7 − x (x ⩽ 1.55). Chem Mater 14:3128–3135CrossRef
86.
Zurück zum Zitat Daroukh MA, Vashook VV, Ullmann H, Tietz F, Raj IA (2003) Oxides of the AMO3 and A2MO4 -type: structural stability, electrical conductivity and thermal expansion. Solid State Ionics 158:141–150CrossRef Daroukh MA, Vashook VV, Ullmann H, Tietz F, Raj IA (2003) Oxides of the AMO3 and A2MO4 -type: structural stability, electrical conductivity and thermal expansion. Solid State Ionics 158:141–150CrossRef
87.
Zurück zum Zitat Bochkov DM, Khatton VV, Kovalevsky AV, Viskup AP, Naumovich EN (1999) Oxygen permeability of La2Cu(Co)O4+δ solid solutions. Solid State Ionics 120:281–288CrossRef Bochkov DM, Khatton VV, Kovalevsky AV, Viskup AP, Naumovich EN (1999) Oxygen permeability of La2Cu(Co)O4+δ solid solutions. Solid State Ionics 120:281–288CrossRef
88.
Zurück zum Zitat Yaremchenko AA, Kharton VV, Patrakeev MV, Frade JR (2003) p-type electronic conductivity, oxygen permeability and stability of La2Ni0.9Co0.1O4+δ. J Mater Chem 13:1136–1144CrossRef Yaremchenko AA, Kharton VV, Patrakeev MV, Frade JR (2003) p-type electronic conductivity, oxygen permeability and stability of La2Ni0.9Co0.1O4+δ. J Mater Chem 13:1136–1144CrossRef
89.
Zurück zum Zitat Kharton VV, Yaremchenko AA, Valente AA, Sobyanin VA, Belyaev VD, Semin GL, Veniaminov SA, Tsipis EV, Shaula AL, Frade JR (2005) Methane oxidation over Fe-, Co-, Ni- and V-containing mixed conductors. Solid State Ionics 176:781–791CrossRef Kharton VV, Yaremchenko AA, Valente AA, Sobyanin VA, Belyaev VD, Semin GL, Veniaminov SA, Tsipis EV, Shaula AL, Frade JR (2005) Methane oxidation over Fe-, Co-, Ni- and V-containing mixed conductors. Solid State Ionics 176:781–791CrossRef
90.
Zurück zum Zitat Kovalevsky AV, Kharton VV, Yaremchenko AA, Pivak YV, Tsipis EV, Yakovlev SO, Markov AA, Naumovich EN, Frade JR (2007) Oxygen permeability, stability and electrochemical behavior of Pr2NiO4+δ-based materials. J Electroceram 18:205–218CrossRef Kovalevsky AV, Kharton VV, Yaremchenko AA, Pivak YV, Tsipis EV, Yakovlev SO, Markov AA, Naumovich EN, Frade JR (2007) Oxygen permeability, stability and electrochemical behavior of Pr2NiO4+δ-based materials. J Electroceram 18:205–218CrossRef
91.
Zurück zum Zitat Ishihara T, Nakashima K, Okada S, Enoki M, Matsumoto H (2008) Defect chemistry and oxygen permeation property of Pr2Ni0.75Cu0.25O4 oxide doped with Ga. Solid State Ionics 179:1367–1371CrossRef Ishihara T, Nakashima K, Okada S, Enoki M, Matsumoto H (2008) Defect chemistry and oxygen permeation property of Pr2Ni0.75Cu0.25O4 oxide doped with Ga. Solid State Ionics 179:1367–1371CrossRef
92.
Zurück zum Zitat Miyoshi S, Furuno T, Matsumoto H, Ishihara T (2006) Conductivity and oxygen permeability of a novel oxide Pr2Ni0.8−xCu0.2FexO4 and its application to partial oxidation of CH4. Solid State Ionics 177:2269–2273CrossRef Miyoshi S, Furuno T, Matsumoto H, Ishihara T (2006) Conductivity and oxygen permeability of a novel oxide Pr2Ni0.8−xCu0.2FexO4 and its application to partial oxidation of CH4. Solid State Ionics 177:2269–2273CrossRef
93.
Zurück zum Zitat Yashima M, Yamada H, Nuansaeng S, Ishihara T (2012) Role of Ga3+ and Cu2+ in the high interstitial oxide-ion diffusivity of Pr2NiO4-based oxides: design concept of interstitial ion conductors through the higher-valence d10 dopant and Jahn − Teller effect. Chem Mater 24:4100–4113CrossRef Yashima M, Yamada H, Nuansaeng S, Ishihara T (2012) Role of Ga3+ and Cu2+ in the high interstitial oxide-ion diffusivity of Pr2NiO4-based oxides: design concept of interstitial ion conductors through the higher-valence d10 dopant and Jahn − Teller effect. Chem Mater 24:4100–4113CrossRef
94.
Zurück zum Zitat Yashima M, Yamada H, Sirikanda N, Ishihara T (2010) Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ. J Am Chem Soc 132:2385–2392CrossRef Yashima M, Yamada H, Sirikanda N, Ishihara T (2010) Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ. J Am Chem Soc 132:2385–2392CrossRef
95.
Zurück zum Zitat Yashima M, Enoki M, Wakita T, Ali R, Matsushita Y, Izumi F, Ishihara T (2008) Structure disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor. J Am Chem Soc 130:2762–2763CrossRef Yashima M, Enoki M, Wakita T, Ali R, Matsushita Y, Izumi F, Ishihara T (2008) Structure disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor. J Am Chem Soc 130:2762–2763CrossRef
96.
Zurück zum Zitat Wei YY, Ravkina O, Klande T, Wang HH, Feldhoff A (2013) Effect of CO2 and SO2 on oxygen permeation and microstructure of (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ membranes. J Membr Sci 429:147–154CrossRef Wei YY, Ravkina O, Klande T, Wang HH, Feldhoff A (2013) Effect of CO2 and SO2 on oxygen permeation and microstructure of (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ membranes. J Membr Sci 429:147–154CrossRef
97.
Zurück zum Zitat Wei YY, Liao Q, Li Z, Wang HH (2013) Enhancement of oxygen permeation through U-shaped K2NiF4-type oxide hollow fiber membranes by surface modifications. Sep Purif Technol 110:74–80CrossRef Wei YY, Liao Q, Li Z, Wang HH (2013) Enhancement of oxygen permeation through U-shaped K2NiF4-type oxide hollow fiber membranes by surface modifications. Sep Purif Technol 110:74–80CrossRef
98.
Zurück zum Zitat Kharton VV, Shaula AL, Naumovich EN, Vyshatko NP, Marozau IP, Viskup AP, Marques FMB (2003) Ionic transport in Gd3Fe5O12- and Y3Fe5O12-based garnets. J Electrochem Soc 150:J33–J42CrossRef Kharton VV, Shaula AL, Naumovich EN, Vyshatko NP, Marozau IP, Viskup AP, Marques FMB (2003) Ionic transport in Gd3Fe5O12- and Y3Fe5O12-based garnets. J Electrochem Soc 150:J33–J42CrossRef
99.
Zurück zum Zitat Shaula AL, Kharton VV, Marques FMB (2004) Mixed conductivity of garnet phases based on gadolinium ferrite. J Eur Ceram Soc 24:1309–1312CrossRef Shaula AL, Kharton VV, Marques FMB (2004) Mixed conductivity of garnet phases based on gadolinium ferrite. J Eur Ceram Soc 24:1309–1312CrossRef
Metadaten
Titel
Perovskite-Type MIEC Membranes
verfasst von
Xuefeng Zhu
Weishen Yang
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53534-9_6