Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Personalized Web Image Organization

verfasst von : Lei Meng, Ah-Hwee Tan, Donald C. Wunsch II

Erschienen in: Adaptive Resonance Theory in Social Media Data Clustering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the problem of semantic gap, i.e. the visual content of an image may not represent its semantics well, existing efforts on web image organization usually transform this task to clustering the surrounding text. However, because the surrounding text is usually short and the words therein usually appear only once, existing text clustering algorithms can hardly use the statistical information for image representation and may achieve downgraded performance with higher computational cost caused by learning from noisy tags. This chapter presents using the Probabilistic ART with user preference architecture, as introduced in Sects. 3.​5 and 3.​4, for personalized web image organization. This fused algorithm is named Probabilistic Fusion ART (PF-ART), which groups images of similar semantics together and simultaneously mines the key tags/topics of individual clusters. Moreover, it performs semi-supervised learning using the user-provided taggings for images to give users direct control of the generated clusters. An agglomerative merging strategy is further used to organize the clusters into a hierarchy, which is of a multi-branch tree structure rather than a binary tree generated by traditional hierarchical clustering algorithms. The entire two-step algorithm is called Personalized Hierarchical Theme-based Clustering (PHTC), for tag-based web image organization. Two large-scale real-world web image collections, namely the NUS-WIDE and the Flickr datasets, are used to evaluate PHTC and compare it with existing algorithms in terms of clustering performance and time cost. The content of this chapter is summarized and extended from the prior study [17] (©2012 IEEE. Reprinted, with permission, from [17]).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Cai D, He X, Li Z, Ma W, Wen J (2004) Hierarchical clustering of www image search results using visual, textual and link information. In: Proceedings ACM multimedia, pp 952–959 Cai D, He X, Li Z, Ma W, Wen J (2004) Hierarchical clustering of www image search results using visual, textual and link information. In: Proceedings ACM multimedia, pp 952–959
3.
Zurück zum Zitat Carpenter GA, Grossberg S, Rosen DB (1991) Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw 4:759–771CrossRef Carpenter GA, Grossberg S, Rosen DB (1991) Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw 4:759–771CrossRef
4.
Zurück zum Zitat Chen L, Xu D, Tsang IW, Luo J (2012) Tag-based image retrieval improved by augmented features and group-based refinement. IEEE Trans Multimed (T-MM) 14:1057–1067CrossRef Chen L, Xu D, Tsang IW, Luo J (2012) Tag-based image retrieval improved by augmented features and group-based refinement. IEEE Trans Multimed (T-MM) 14:1057–1067CrossRef
5.
Zurück zum Zitat Chen Y, Dong M, Wan W (2007) Image co-clustering with multi-modality features and user feedbacks. In: MM pp 689–692 Chen Y, Dong M, Wan W (2007) Image co-clustering with multi-modality features and user feedbacks. In: MM pp 689–692
6.
Zurück zum Zitat Chen Y, Rege M, Dong M, Hua J (2007) Incorporating user provided constraints into document clustering. In: ICDM pp 103–112 Chen Y, Rege M, Dong M, Hua J (2007) Incorporating user provided constraints into document clustering. In: ICDM pp 103–112
7.
Zurück zum Zitat Chua T, Tang J, Hong R, Li H, Luo, Z, Zheng Y (2009) NUS-WIDE: a real-world web image database from national university of Singapore. In: CIVR pp 1–9 Chua T, Tang J, Hong R, Li H, Luo, Z, Zheng Y (2009) NUS-WIDE: a real-world web image database from national university of Singapore. In: CIVR pp 1–9
8.
Zurück zum Zitat Cilibrasi R, Vitanyi PMB (2007) The google similarity distance. TKDE 19(3):370–383CrossRef Cilibrasi R, Vitanyi PMB (2007) The google similarity distance. TKDE 19(3):370–383CrossRef
9.
Zurück zum Zitat Ding H, Liu J, Lu H (2008) Hierarchical clustering-based navigation of image search results. In: Proceedings of ACM Multimedia, pp 741–744 Ding H, Liu J, Lu H (2008) Hierarchical clustering-based navigation of image search results. In: Proceedings of ACM Multimedia, pp 741–744
10.
Zurück zum Zitat Gower J, Ross G (1969) Minimum spanning trees and single linkage clustering analysis. J R Stat Soc Ser C 595–616 Gower J, Ross G (1969) Minimum spanning trees and single linkage clustering analysis. J R Stat Soc Ser C 595–616
11.
Zurück zum Zitat He J, Tan AH, Tan CL, Sung SY (2003) On quantitative evaluation of clustering systems. In: Clustering and Information Retrieval, Kluwer Academic Publishers, pp 105–133 He J, Tan AH, Tan CL, Sung SY (2003) On quantitative evaluation of clustering systems. In: Clustering and Information Retrieval, Kluwer Academic Publishers, pp 105–133
12.
Zurück zum Zitat Hsu C, Caverlee J, Khabiri E (2011) Hierarchical comments-based clustering. In: Proceedings ACM SAC, pp 1130–1137 Hsu C, Caverlee J, Khabiri E (2011) Hierarchical comments-based clustering. In: Proceedings ACM SAC, pp 1130–1137
13.
Zurück zum Zitat Hu X, Sun N, Zhang C, Chua TS (2009) Exploiting internal and external semantics for the clustering of short texts using world knowledge. In: Proceedings of ACM conference on information and knowledge management, pp 919–928 Hu X, Sun N, Zhang C, Chua TS (2009) Exploiting internal and external semantics for the clustering of short texts using world knowledge. In: Proceedings of ACM conference on information and knowledge management, pp 919–928
14.
Zurück zum Zitat Jing F, Wang C, Yao Y, Zhang L, Ma W (2006) Igroup: web image search results clustering. In: Proceedings of ACM Multimedia, pp 377–384 Jing F, Wang C, Yao Y, Zhang L, Ma W (2006) Igroup: web image search results clustering. In: Proceedings of ACM Multimedia, pp 377–384
15.
Zurück zum Zitat Li L, Liang Y (2010) A hierarchical fuzzy clustering algorithm. In: Proceedings ICCASM, pp 248–255 Li L, Liang Y (2010) A hierarchical fuzzy clustering algorithm. In: Proceedings ICCASM, pp 248–255
16.
Zurück zum Zitat Liu D, Hua X, Yang L, Wang M, Zhang H (2009) Tag ranking. In: Proceedings of international conference on World Wide Web, pp 351–360 Liu D, Hua X, Yang L, Wang M, Zhang H (2009) Tag ranking. In: Proceedings of international conference on World Wide Web, pp 351–360
17.
Zurück zum Zitat Meng L, Tan AH (2012) Semi-supervised hierarchical clustering for personalized web image organization. In: Proceedings of international joint conference on neural networks (IJCNN), pp 1–8 Meng L, Tan AH (2012) Semi-supervised hierarchical clustering for personalized web image organization. In: Proceedings of international joint conference on neural networks (IJCNN), pp 1–8
18.
Zurück zum Zitat Pedersen T, Patwardhan S, Michelizzi J (2004) Wordnet: similarity: measuring the relatedness of concepts. Demonstration papers at HLT-NAACL Pedersen T, Patwardhan S, Michelizzi J (2004) Wordnet: similarity: measuring the relatedness of concepts. Demonstration papers at HLT-NAACL
19.
Zurück zum Zitat Rege M, Dong M, Fotouhi F (2006) Co-clustering documents and words using bipartite isoperimetric graph partitioning. In: Proceedings of international conference on data mining, pp 532–541 Rege M, Dong M, Fotouhi F (2006) Co-clustering documents and words using bipartite isoperimetric graph partitioning. In: Proceedings of international conference on data mining, pp 532–541
20.
Zurück zum Zitat Schtze H, Silverstein C (1997) Projections for efficient document clustering. In: Proceedings SIGIR, pp 74–81 Schtze H, Silverstein C (1997) Projections for efficient document clustering. In: Proceedings SIGIR, pp 74–81
21.
Zurück zum Zitat Shi X, Fan W, Yu PS (2010) Efficient semi-supervised spectral co-clustering with constraints. In: ICDM, pp 532–541 Shi X, Fan W, Yu PS (2010) Efficient semi-supervised spectral co-clustering with constraints. In: ICDM, pp 532–541
22.
Zurück zum Zitat Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of SIGIR conference on research and development in information retrieval, pp 268–273 Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of SIGIR conference on research and development in information retrieval, pp 268–273
Metadaten
Titel
Personalized Web Image Organization
verfasst von
Lei Meng
Ah-Hwee Tan
Donald C. Wunsch II
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-02985-2_4