Skip to main content
Erschienen in: Journal of Polymer Research 6/2015

01.06.2015 | Original Paper

Phase composition and surface properties of nylon-6 nanofibers prepared by nanospider technology at various electrode distances

verfasst von: Pavla Čapková, Antonín Čajka, Zdenka Kolská, Martin Kormunda, Jaroslav Pavlík, Marcela Munzarová, Milan Dopita, David Rafaja

Erschienen in: Journal of Polymer Research | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phase composition, morphology and surface properties of nylon-6 nanofibers prepared by Nanospider technology have been studied for dependence on spinning distance using a combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrokinetic analysis, and scanning electron and transmission electron microscopy (SEM, TEM). The effect of the electric field strength on the nanofiber phase composition was investigated via the variable distance of the electrodes. Quantitative XRD phase analysis revealed the dependence of the phase composition on the electrode distance, which in the case of roller electrospinning, differs from that by melt spinning. A combination of XRD, XPS, and TEM suggested a core-shell structure model of the nanofibers. The XPS and electrokinetic analysis revealed the difference in surface chemistry and zeta potential at the face and reverse side of the nanofiber textile adjacent to a polypropylene (PP) antistatic spunbond, which may be important in subsequent chemical modification of nanofiber textiles and in its use for tissue engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ant HR, Bajgai MP, Yi C, Nirmala R, Nam KT, Baek W, Kim HY (2010) Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids Surf A Physicochem Eng Asp 370:87–94CrossRef Ant HR, Bajgai MP, Yi C, Nirmala R, Nam KT, Baek W, Kim HY (2010) Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids Surf A Physicochem Eng Asp 370:87–94CrossRef
2.
Zurück zum Zitat Sang Y, Gu Q, Sun T, Li F, Liang CJ (2008) Filtration by a novel nanofibers membrane and aluminia adsorption to remove copper(II) from groundwater. J Hazard Mater 153:860–866CrossRef Sang Y, Gu Q, Sun T, Li F, Liang CJ (2008) Filtration by a novel nanofibers membrane and aluminia adsorption to remove copper(II) from groundwater. J Hazard Mater 153:860–866CrossRef
3.
Zurück zum Zitat Yun KM, Hogan CJ, Matsubayashi Y, Kawabe M, Iskandar F, Okuyama K (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62:4751–4759CrossRef Yun KM, Hogan CJ, Matsubayashi Y, Kawabe M, Iskandar F, Okuyama K (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62:4751–4759CrossRef
4.
Zurück zum Zitat Nova CJM, Jeanjean DP, Belleville MP, Barboiu M, Rivallin M, Rio G (2008) Elaboration, characterization and study of a new hybrid chitosan/ceramic membrane for affinity membrane chromatography. J Membr Sci 321:81–89CrossRef Nova CJM, Jeanjean DP, Belleville MP, Barboiu M, Rivallin M, Rio G (2008) Elaboration, characterization and study of a new hybrid chitosan/ceramic membrane for affinity membrane chromatography. J Membr Sci 321:81–89CrossRef
5.
Zurück zum Zitat Vitchuli N, Shi Q, Nowak J, Cord MM, Bourham M, Zhang X (2010) Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci 116:2181–2187 Vitchuli N, Shi Q, Nowak J, Cord MM, Bourham M, Zhang X (2010) Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci 116:2181–2187
6.
Zurück zum Zitat Raghavan P, Zhao X, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nan C (2008) Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoro-propylen) with nano-sized ceramics fillers. Electrochim Acta 54:228–234CrossRef Raghavan P, Zhao X, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nan C (2008) Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoro-propylen) with nano-sized ceramics fillers. Electrochim Acta 54:228–234CrossRef
7.
Zurück zum Zitat Guo B, Zhao S, Han G, Zhang L (2008) Continuous thin gold films electroless deposited on fibrous mats of polyacrylonitrile and their electrocatalytic activity towards the oxidation of methanol. Electrochim Acta 53:5174–5179CrossRef Guo B, Zhao S, Han G, Zhang L (2008) Continuous thin gold films electroless deposited on fibrous mats of polyacrylonitrile and their electrocatalytic activity towards the oxidation of methanol. Electrochim Acta 53:5174–5179CrossRef
8.
Zurück zum Zitat Sill TJ, Recum HA (2008) Electrospinning: application in drug delivery and tissue engineering. Biomaterials 29:1989–2006CrossRef Sill TJ, Recum HA (2008) Electrospinning: application in drug delivery and tissue engineering. Biomaterials 29:1989–2006CrossRef
9.
Zurück zum Zitat Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29:4100–4107CrossRef Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29:4100–4107CrossRef
10.
Zurück zum Zitat Zhang Y, Venugopal JR, Turki AE, Ramakrishna S, Su B, Li CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322CrossRef Zhang Y, Venugopal JR, Turki AE, Ramakrishna S, Su B, Li CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322CrossRef
11.
Zurück zum Zitat Park SH, Kim TG, Kim HC, Yang DY, Park TG (2008) Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for application in tissue regeneration. Acta Biomater 4:1198–1207CrossRef Park SH, Kim TG, Kim HC, Yang DY, Park TG (2008) Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for application in tissue regeneration. Acta Biomater 4:1198–1207CrossRef
12.
Zurück zum Zitat Sohrabi A, Shaibani PM, Thundat T (2013) The effect of applied electric field on on the diameter and size distribution of electrospun nylon6 nanofibers. Scanning 35:183–188CrossRef Sohrabi A, Shaibani PM, Thundat T (2013) The effect of applied electric field on on the diameter and size distribution of electrospun nylon6 nanofibers. Scanning 35:183–188CrossRef
13.
Zurück zum Zitat Fornes TD, Paul DR (2003) Crystallization behavior of nylon 6 nanocomposites. Polymer 44:3945–3961CrossRef Fornes TD, Paul DR (2003) Crystallization behavior of nylon 6 nanocomposites. Polymer 44:3945–3961CrossRef
14.
Zurück zum Zitat Samon JM, Schultz JM, Wu J, Hsiao B, Yeh F, Kolb R (1999) Study of the structure development during the melt spinning of nylon 6 fiber by on-line wide-angle synchrotron x-ray scattering techniques. J Polym Sci Part B-Polym Phys 37:1277–1287CrossRef Samon JM, Schultz JM, Wu J, Hsiao B, Yeh F, Kolb R (1999) Study of the structure development during the melt spinning of nylon 6 fiber by on-line wide-angle synchrotron x-ray scattering techniques. J Polym Sci Part B-Polym Phys 37:1277–1287CrossRef
15.
Zurück zum Zitat Zhang S, Shim WS, Kim J (2009) Design of ultra-fine nonwovens via electrospinning of Nylon 6: spinning parameters and filtration efficiency. Materials 30:3659–3666 Zhang S, Shim WS, Kim J (2009) Design of ultra-fine nonwovens via electrospinning of Nylon 6: spinning parameters and filtration efficiency. Materials 30:3659–3666
16.
Zurück zum Zitat Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH (2003) Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci A Polym Chem 41:545–553CrossRef Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH (2003) Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci A Polym Chem 41:545–553CrossRef
17.
Zurück zum Zitat Penning JP, Ruiten JV, Brouwer R, Gabriëlse W (2003) Orientation and structure development in melt-spun Nylon-6 fibres. Polymer 44:5869–5876CrossRef Penning JP, Ruiten JV, Brouwer R, Gabriëlse W (2003) Orientation and structure development in melt-spun Nylon-6 fibres. Polymer 44:5869–5876CrossRef
18.
Zurück zum Zitat Hussain D, Loyal F, Greiner A, Wendorff JH (2010) Structure property correlations for electrospun nanofiber nonwovens. Polymer 51:3989–3997CrossRef Hussain D, Loyal F, Greiner A, Wendorff JH (2010) Structure property correlations for electrospun nanofiber nonwovens. Polymer 51:3989–3997CrossRef
19.
Zurück zum Zitat Deyab SSA, Newehy MHE, Nirmala R, Megeed AA, Kim HY (2013) Preparation of nylon-6/chitosan composites by nanospider technology and their use as candidate for antibacterial agents. Korean J Chem Eng 30:422–428CrossRef Deyab SSA, Newehy MHE, Nirmala R, Megeed AA, Kim HY (2013) Preparation of nylon-6/chitosan composites by nanospider technology and their use as candidate for antibacterial agents. Korean J Chem Eng 30:422–428CrossRef
20.
Zurück zum Zitat Brill R (1943) Crystal structure of nylon 6. Z Physik Chem B 53:61–66 Brill R (1943) Crystal structure of nylon 6. Z Physik Chem B 53:61–66
21.
Zurück zum Zitat Holmes R, Bunn CW, Smith DL (2003) The crystal structure of polycaproamide: Nylon 6. J Polym Sci A Polym Chem 17:159–177 Holmes R, Bunn CW, Smith DL (2003) The crystal structure of polycaproamide: Nylon 6. J Polym Sci A Polym Chem 17:159–177
22.
Zurück zum Zitat Arimoto H, Ishibashi M, Hirai M, Chatani YJ (1965) Crystal structure of gamma-form of nylon 6. Polym Sci Part A 3:317–326 Arimoto H, Ishibashi M, Hirai M, Chatani YJ (1965) Crystal structure of gamma-form of nylon 6. Polym Sci Part A 3:317–326
23.
Zurück zum Zitat Roldan LG, Kaufman HS (1963) Crystallization of nylon 6. J Polym Sci B 1:603–608CrossRef Roldan LG, Kaufman HS (1963) Crystallization of nylon 6. J Polym Sci B 1:603–608CrossRef
24.
Zurück zum Zitat Illers KH, Haberkorn H (1971) Specific volume, heat of fusion and crystallinity of nylon-6.6 and nylon 8. Makromol Chem 146:267–274CrossRef Illers KH, Haberkorn H (1971) Specific volume, heat of fusion and crystallinity of nylon-6.6 and nylon 8. Makromol Chem 146:267–274CrossRef
25.
Zurück zum Zitat Gurato G, Fichera A, Grandi FZ, Zannetti R, Canal P (1974) Crystalinity and polymorphism of 6-polyamide. Makromol Chem 175:953–975CrossRef Gurato G, Fichera A, Grandi FZ, Zannetti R, Canal P (1974) Crystalinity and polymorphism of 6-polyamide. Makromol Chem 175:953–975CrossRef
26.
Zurück zum Zitat Kyotani M, Mitsuhashi S (1972) Studies on crystalline forms of nylon 6. II. Crystallization from the melt. J Polym Sci, Part A-2 10:1497–1508CrossRef Kyotani M, Mitsuhashi S (1972) Studies on crystalline forms of nylon 6. II. Crystallization from the melt. J Polym Sci, Part A-2 10:1497–1508CrossRef
27.
Zurück zum Zitat Murthy NS, Aharoni SM, Szollosi AB (1985) Stability of the γ form and the development of the α form in nylon 6. J Polym Sci Polym Phys 23:2549–2565CrossRef Murthy NS, Aharoni SM, Szollosi AB (1985) Stability of the γ form and the development of the α form in nylon 6. J Polym Sci Polym Phys 23:2549–2565CrossRef
28.
Zurück zum Zitat Murthy NS, Curran SA, Aharoni SM, Minor H (1991) Premelting crystalline relaxations and phase-transitions in nylon-6 and 6,6. Macromolecules 24:3215–3220CrossRef Murthy NS, Curran SA, Aharoni SM, Minor H (1991) Premelting crystalline relaxations and phase-transitions in nylon-6 and 6,6. Macromolecules 24:3215–3220CrossRef
29.
Zurück zum Zitat Ramesh C, Gowd EB (2001) High-temperature X-ray diffraction studies on the crystalline transitions in the alpha- and gamma-forms of nylon-6. Macromolecules 34:3308–3313CrossRef Ramesh C, Gowd EB (2001) High-temperature X-ray diffraction studies on the crystalline transitions in the alpha- and gamma-forms of nylon-6. Macromolecules 34:3308–3313CrossRef
30.
Zurück zum Zitat Lincoln DM, Vaia RA, Wang ZG, Hsiao BS, Krishnamoorti R (2001) Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42:9975–9985CrossRef Lincoln DM, Vaia RA, Wang ZG, Hsiao BS, Krishnamoorti R (2001) Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42:9975–9985CrossRef
31.
Zurück zum Zitat Salem DR, Moore RAF, Weigmann HD (1987) Macromolecular order in spin-oriented nylon-6 (polycaproamide) fibers. J Polym Sci Part B: Polym Phys 25:567–589CrossRef Salem DR, Moore RAF, Weigmann HD (1987) Macromolecular order in spin-oriented nylon-6 (polycaproamide) fibers. J Polym Sci Part B: Polym Phys 25:567–589CrossRef
32.
Zurück zum Zitat Campoy I, Gomez MA, Marco C (1998) Structure and thermal properties of blends of nylon 6 and a liquid crystal copolyester. Polymer 39:6279–6288CrossRef Campoy I, Gomez MA, Marco C (1998) Structure and thermal properties of blends of nylon 6 and a liquid crystal copolyester. Polymer 39:6279–6288CrossRef
33.
Zurück zum Zitat Okada A, Kawasumi M, Tajima I, Kurauchi T, Kamigaito O (1989) A solid state NMR study on crystalline forms of nylon 6. J Appl Polym Sci 37:1363–1371CrossRef Okada A, Kawasumi M, Tajima I, Kurauchi T, Kamigaito O (1989) A solid state NMR study on crystalline forms of nylon 6. J Appl Polym Sci 37:1363–1371CrossRef
34.
Zurück zum Zitat Jirsak O, Petrik S (2012) Recent advances in nanofibre technology: needleless electrospinning. Int J Nanotechnol 9:836–845CrossRef Jirsak O, Petrik S (2012) Recent advances in nanofibre technology: needleless electrospinning. Int J Nanotechnol 9:836–845CrossRef
35.
Zurück zum Zitat Yener F, Jirsak O (2012) Comparison between the needle and roller electrospinning of polyvinylbutyral. J Nanomater 2012:1155–1161CrossRef Yener F, Jirsak O (2012) Comparison between the needle and roller electrospinning of polyvinylbutyral. J Nanomater 2012:1155–1161CrossRef
36.
Zurück zum Zitat Kolská Z, Řezníčková A, Švorčík V (2012) Surface characterization of polymer foils. e-Polymers: Article 083:1 Kolská Z, Řezníčková A, Švorčík V (2012) Surface characterization of polymer foils. e-Polymers: Article 083:1
38.
Zurück zum Zitat Hall MM Jr, Veerarghavan VG, Rubin H, Winchell PG (1977) J Appl Cryst 10:66–68CrossRef Hall MM Jr, Veerarghavan VG, Rubin H, Winchell PG (1977) J Appl Cryst 10:66–68CrossRef
39.
Zurück zum Zitat Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 22:151–152CrossRef Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 22:151–152CrossRef
40.
Zurück zum Zitat Vesel A, Mozetic M, Strnad S, Persin Z, Stana-Kleinschek K, Hauptman N (2009) Plasma modification of viscose textile. Vacuum 84:79–82CrossRef Vesel A, Mozetic M, Strnad S, Persin Z, Stana-Kleinschek K, Hauptman N (2009) Plasma modification of viscose textile. Vacuum 84:79–82CrossRef
41.
Zurück zum Zitat Li YY, Goddard WA (2002) Nylon 6 crystal structures, folds, and lamellae from theory. Macromolecules 35:8440–8455CrossRef Li YY, Goddard WA (2002) Nylon 6 crystal structures, folds, and lamellae from theory. Macromolecules 35:8440–8455CrossRef
42.
Zurück zum Zitat Liu Y, Li C, Guan F, Yi G, Hedin NE, Zhu L, Fong H (2007) Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules 40:6283–6290CrossRef Liu Y, Li C, Guan F, Yi G, Hedin NE, Zhu L, Fong H (2007) Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules 40:6283–6290CrossRef
43.
Zurück zum Zitat Švorčík V, Řezníčková A, Kolská Z, Slepička P, Hnatowicz V (2010) Variable surface properties of PTFE foils. e-Polymers Article 133: 1 Švorčík V, Řezníčková A, Kolská Z, Slepička P, Hnatowicz V (2010) Variable surface properties of PTFE foils. e-Polymers Article 133: 1
44.
Zurück zum Zitat Kolská Z, Řezníčková A, Hnatowicz V, Švorčík V (2012) Surface properties of poly(ethylene terephthalate) foils of different thicknesses. J Mater Sci 47:6429–6435CrossRef Kolská Z, Řezníčková A, Hnatowicz V, Švorčík V (2012) Surface properties of poly(ethylene terephthalate) foils of different thicknesses. J Mater Sci 47:6429–6435CrossRef
45.
Zurück zum Zitat Kolská Z, Řezníčková A, Nagyová M, Slepičková Kasálková N, Sajdl P, Slepička P, Švorčík V (2014) Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym Degrad Stabil 101:1–9CrossRef Kolská Z, Řezníčková A, Nagyová M, Slepičková Kasálková N, Sajdl P, Slepička P, Švorčík V (2014) Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym Degrad Stabil 101:1–9CrossRef
46.
Zurück zum Zitat Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082CrossRef Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082CrossRef
47.
Zurück zum Zitat Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730CrossRef Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730CrossRef
48.
Zurück zum Zitat Sirmerová M, Procházkova G, Siristova L, Kolská Z, Branyik T (2013) Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. J Appl Phycol 25:1687–1695CrossRef Sirmerová M, Procházkova G, Siristova L, Kolská Z, Branyik T (2013) Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. J Appl Phycol 25:1687–1695CrossRef
Metadaten
Titel
Phase composition and surface properties of nylon-6 nanofibers prepared by nanospider technology at various electrode distances
verfasst von
Pavla Čapková
Antonín Čajka
Zdenka Kolská
Martin Kormunda
Jaroslav Pavlík
Marcela Munzarová
Milan Dopita
David Rafaja
Publikationsdatum
01.06.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 6/2015
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-015-0741-3

Weitere Artikel der Ausgabe 6/2015

Journal of Polymer Research 6/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.