Skip to main content
Erschienen in: Computational Mechanics 6/2017

17.02.2017 | Original Paper

Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

verfasst von: J. Reinoso, M. Paggi, C. Linder

Erschienen in: Computational Mechanics | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Reinoso J, Paggi M, Areias P (2016) A finite element framework for the interplay between delamination and buckling of rubber-like bi-material systems and stretchable electronics. J Eur Ceram Soc 36:2371–2382CrossRef Reinoso J, Paggi M, Areias P (2016) A finite element framework for the interplay between delamination and buckling of rubber-like bi-material systems and stretchable electronics. J Eur Ceram Soc 36:2371–2382CrossRef
2.
Zurück zum Zitat Paggi M, Corrado M, Rodriguez MA (2013) A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules. Compos Struct 95:630–638CrossRef Paggi M, Corrado M, Rodriguez MA (2013) A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules. Compos Struct 95:630–638CrossRef
3.
Zurück zum Zitat van der Sluis O, Abdallah AA, Bouten PCP, Timmermans PHM, den Toonder JMJ, de With G (2011) Effect of a hard coat layer on buckle delamination of thin ITO layers on a compliant elasto-plastic substrate: an experimental-numerical approach. Eng Fract Mech 78:877–889CrossRef van der Sluis O, Abdallah AA, Bouten PCP, Timmermans PHM, den Toonder JMJ, de With G (2011) Effect of a hard coat layer on buckle delamination of thin ITO layers on a compliant elasto-plastic substrate: an experimental-numerical approach. Eng Fract Mech 78:877–889CrossRef
4.
Zurück zum Zitat Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607CrossRef Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607CrossRef
5.
6.
Zurück zum Zitat Lemaitre J, Chaboche JL (1990) Mechanics of solid materials, vol 40. Cambridge University Press, CambridgeCrossRefMATH Lemaitre J, Chaboche JL (1990) Mechanics of solid materials, vol 40. Cambridge University Press, CambridgeCrossRefMATH
7.
Zurück zum Zitat Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403CrossRefMATH Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403CrossRefMATH
8.
Zurück zum Zitat Pijaudier-Cabot G, Bazant Z (1987) Nonlocal damage theory. J Eng Mech 113:1512–1533CrossRefMATH Pijaudier-Cabot G, Bazant Z (1987) Nonlocal damage theory. J Eng Mech 113:1512–1533CrossRefMATH
9.
Zurück zum Zitat Linder C, Armero F (2007) Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int J Numer Methods Eng 72:1391–1433MathSciNetCrossRefMATH Linder C, Armero F (2007) Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int J Numer Methods Eng 72:1391–1433MathSciNetCrossRefMATH
10.
Zurück zum Zitat Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefMATH Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefMATH
11.
Zurück zum Zitat Moës N, Stolz C, Bernard P-E, Chevaugeon N (2011) A level set based model for crack growth: thick level set method. Int J Numer Methods Eng 86(3):358–380CrossRefMATH Moës N, Stolz C, Bernard P-E, Chevaugeon N (2011) A level set based model for crack growth: thick level set method. Int J Numer Methods Eng 86(3):358–380CrossRefMATH
12.
Zurück zum Zitat Reinoso J, Paggi M (2014) A consistent interface element formulation for geometrical and material nonlinearities. Comput Mech 54(6):1569–1581MathSciNetCrossRefMATH Reinoso J, Paggi M (2014) A consistent interface element formulation for geometrical and material nonlinearities. Comput Mech 54(6):1569–1581MathSciNetCrossRefMATH
13.
Zurück zum Zitat Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135:117–131CrossRef Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135:117–131CrossRef
14.
Zurück zum Zitat Linder C, Zhang X (2013) A marching cubes based failure surface propagation concept for 3D finite elements with non-planar embedded strong discontinuities of higher order kinematics. Int J Numer Methods Eng 96:339–372CrossRefMATH Linder C, Zhang X (2013) A marching cubes based failure surface propagation concept for 3D finite elements with non-planar embedded strong discontinuities of higher order kinematics. Int J Numer Methods Eng 96:339–372CrossRefMATH
15.
Zurück zum Zitat Waffenschmidt T, Polindara C, Menzel A, Blanco S (2014) A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput Methods Appl Mech Eng 268:801–842MathSciNetCrossRefMATH Waffenschmidt T, Polindara C, Menzel A, Blanco S (2014) A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput Methods Appl Mech Eng 268:801–842MathSciNetCrossRefMATH
16.
Zurück zum Zitat Dolbow J, Moës N, Belytschko T (2000) Modeling fracture in MindlinReissner with the extended finite element method. Int J Solids Struct 33:7161–83CrossRefMATH Dolbow J, Moës N, Belytschko T (2000) Modeling fracture in MindlinReissner with the extended finite element method. Int J Solids Struct 33:7161–83CrossRefMATH
17.
Zurück zum Zitat Areias PMA, Belytschko T (2005) Non-linear analysis of shells with arbitrary evolving cracks using XFEM. Int J Numer Methods Eng 62:384–415CrossRefMATH Areias PMA, Belytschko T (2005) Non-linear analysis of shells with arbitrary evolving cracks using XFEM. Int J Numer Methods Eng 62:384–415CrossRefMATH
18.
Zurück zum Zitat Areias PMA, Song JH, Belytschko T (2006) Analysis of fracture in thin shells by overlapping paired elements. Comput Methods Appl Mech Eng 195:5343–5360CrossRefMATH Areias PMA, Song JH, Belytschko T (2006) Analysis of fracture in thin shells by overlapping paired elements. Comput Methods Appl Mech Eng 195:5343–5360CrossRefMATH
19.
Zurück zum Zitat Rabczuk T, Areias PMA (2006) A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Comput Model Eng Sci 16:115–130 Rabczuk T, Areias PMA (2006) A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Comput Model Eng Sci 16:115–130
20.
Zurück zum Zitat Rabczuk T, Zi G (2010) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6):743–760CrossRefMATH Rabczuk T, Zi G (2010) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6):743–760CrossRefMATH
21.
Zurück zum Zitat Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193:3523–3540MathSciNetCrossRefMATH Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193:3523–3540MathSciNetCrossRefMATH
22.
Zurück zum Zitat Chau-Dinh T, Zi G, Lee PS, Rabczuk T, Song JH (2012) Phantom-node method for shell models with arbitrary cracks. Comput Struct 92:242–256CrossRef Chau-Dinh T, Zi G, Lee PS, Rabczuk T, Song JH (2012) Phantom-node method for shell models with arbitrary cracks. Comput Struct 92:242–256CrossRef
23.
Zurück zum Zitat Remmers JJC, Wells GN, de Borst R (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Methods Eng 58:2013–2040CrossRefMATH Remmers JJC, Wells GN, de Borst R (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Methods Eng 58:2013–2040CrossRefMATH
24.
Zurück zum Zitat Hosseini S, Remmers JJ, Borst R (2014) The incorporation of gradient damage models in shell elements. Int J Numer Methods Eng 98(6):391–398MathSciNetCrossRefMATH Hosseini S, Remmers JJ, Borst R (2014) The incorporation of gradient damage models in shell elements. Int J Numer Methods Eng 98(6):391–398MathSciNetCrossRefMATH
25.
Zurück zum Zitat Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. Boll Un Mat Italy B(7)6(1):105–123 Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. Boll Un Mat Italy B(7)6(1):105–123
26.
Zurück zum Zitat Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342MathSciNetCrossRefMATH Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342MathSciNetCrossRefMATH
27.
Zurück zum Zitat Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229CrossRefMATH Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229CrossRefMATH
28.
Zurück zum Zitat Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826MathSciNetCrossRefMATH Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826MathSciNetCrossRefMATH
29.
Zurück zum Zitat Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198CrossRef Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198CrossRef
30.
Zurück zum Zitat Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rateindependent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778CrossRefMATH Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rateindependent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778CrossRefMATH
31.
Zurück zum Zitat Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase field models of fracture: variational principles and multi-field Fe-implementations. Int J Numer Methods Eng 83(10):1273–1311MathSciNetCrossRefMATH Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase field models of fracture: variational principles and multi-field Fe-implementations. Int J Numer Methods Eng 83(10):1273–1311MathSciNetCrossRefMATH
33.
Zurück zum Zitat Miehe C, Schänzel L (2014) Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure. J Mech Phys Solids 65:93–113MathSciNetCrossRefMATH Miehe C, Schänzel L (2014) Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure. J Mech Phys Solids 65:93–113MathSciNetCrossRefMATH
34.
Zurück zum Zitat Miehe C, Schänzel L, Ulmer H (2015) Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput Methods Appl Mech Eng 294:449–485MathSciNetCrossRef Miehe C, Schänzel L, Ulmer H (2015) Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput Methods Appl Mech Eng 294:449–485MathSciNetCrossRef
35.
Zurück zum Zitat Miehe C, Kienle D, Aldakheel F, Teichtmeister S (2016) Phase field modeling of fracture in porous plasticity: a variational gradient-extended Eulerian framework for the macroscopic analysis of ductile failure. Comput Methods Appl Mech Eng 312:3–50MathSciNetCrossRef Miehe C, Kienle D, Aldakheel F, Teichtmeister S (2016) Phase field modeling of fracture in porous plasticity: a variational gradient-extended Eulerian framework for the macroscopic analysis of ductile failure. Comput Methods Appl Mech Eng 312:3–50MathSciNetCrossRef
36.
Zurück zum Zitat Zhang X, Krischok A, Linder C (2016) A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes. Comput Methods Appl Mech Eng 312:51–77MathSciNetCrossRef Zhang X, Krischok A, Linder C (2016) A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes. Comput Methods Appl Mech Eng 312:51–77MathSciNetCrossRef
37.
Zurück zum Zitat Miehe C, Schänzel L, Ulmer H (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elasticplastic solids. Comput Methods Appl Mech Eng 294:486–522CrossRef Miehe C, Schänzel L, Ulmer H (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elasticplastic solids. Comput Methods Appl Mech Eng 294:486–522CrossRef
38.
Zurück zum Zitat Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217220:7795MathSciNetMATH Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217220:7795MathSciNetMATH
39.
Zurück zum Zitat Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase field approach to fracture. Int J Numer Methods Eng 99(12):906–924MathSciNetCrossRefMATH Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase field approach to fracture. Int J Numer Methods Eng 99(12):906–924MathSciNetCrossRefMATH
40.
Zurück zum Zitat Hofacker M, Miehe C (2013) A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93(3):276–301MathSciNetCrossRefMATH Hofacker M, Miehe C (2013) A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93(3):276–301MathSciNetCrossRefMATH
41.
Zurück zum Zitat Keip MA, Kiefer B, Schröder J, Linder C (2016) Special Issue on Phase Field Approaches to Fracture. In: Memory of Professor Christian Miehe (1956–2016). Comput Methods Appl Mech Eng 312:1–2 Keip MA, Kiefer B, Schröder J, Linder C (2016) Special Issue on Phase Field Approaches to Fracture. In: Memory of Professor Christian Miehe (1956–2016). Comput Methods Appl Mech Eng 312:1–2
42.
Zurück zum Zitat Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M (2014) Phase-field modeling of fracture in linear thin shells. Theor Appl Fract Mech 69:102–109CrossRef Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M (2014) Phase-field modeling of fracture in linear thin shells. Theor Appl Fract Mech 69:102–109CrossRef
43.
Zurück zum Zitat Ulmer H, Hofacker M, Miehe C (2013) Phase field modeling of fracture in plates and shells. PAMM 12(1):171–172CrossRef Ulmer H, Hofacker M, Miehe C (2013) Phase field modeling of fracture in plates and shells. PAMM 12(1):171–172CrossRef
44.
Zurück zum Zitat Ambati M, De Lorenzis L (2016) Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements. Comput Methods Appl Mech Eng 312:351–373 Ambati M, De Lorenzis L (2016) Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements. Comput Methods Appl Mech Eng 312:351–373
45.
Zurück zum Zitat Areias P, Rabczuk T, Msekh MA (2016) Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 312:322–350 Areias P, Rabczuk T, Msekh MA (2016) Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 312:322–350
47.
Zurück zum Zitat Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40:4427–4449CrossRefMATH Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40:4427–4449CrossRefMATH
48.
Zurück zum Zitat Hauptmann R, Schweizerhof K (1998) A systematic development of solid-shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Methods Eng 42:49–69CrossRefMATH Hauptmann R, Schweizerhof K (1998) A systematic development of solid-shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Methods Eng 42:49–69CrossRefMATH
49.
Zurück zum Zitat Klinkel S, Wagner W (1997) A geometrical non-linear brick element based on the EAS-method. Int J Numer Methods Eng 40:4529–4545CrossRefMATH Klinkel S, Wagner W (1997) A geometrical non-linear brick element based on the EAS-method. Int J Numer Methods Eng 40:4529–4545CrossRefMATH
50.
Zurück zum Zitat Miehe C (1998) A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Comput Methods Appl Mech Eng 155:193–233CrossRefMATH Miehe C (1998) A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Comput Methods Appl Mech Eng 155:193–233CrossRefMATH
51.
Zurück zum Zitat Simo JC, Rifai S (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MathSciNetCrossRefMATH Simo JC, Rifai S (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MathSciNetCrossRefMATH
52.
Zurück zum Zitat Simo JC, Armero F (1992) Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449MathSciNetCrossRefMATH Simo JC, Armero F (1992) Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449MathSciNetCrossRefMATH
53.
Zurück zum Zitat Dvorkin EN, Bathe KJ (1984) Continuum mechanics based fournode shell element for general non-linear analysis. Eng Comput 1:77–88CrossRef Dvorkin EN, Bathe KJ (1984) Continuum mechanics based fournode shell element for general non-linear analysis. Eng Comput 1:77–88CrossRef
54.
Zurück zum Zitat Betsch P, Stein E (1995) An assumed strain approach avoiding arti- ficial thickness straining for a nonlinear 4-node shell element. Commun Numer Methods Eng 11:899–909CrossRefMATH Betsch P, Stein E (1995) An assumed strain approach avoiding arti- ficial thickness straining for a nonlinear 4-node shell element. Commun Numer Methods Eng 11:899–909CrossRefMATH
55.
Zurück zum Zitat Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput Methods Appl Mech Eng 192:975–1016CrossRefMATH Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput Methods Appl Mech Eng 192:975–1016CrossRefMATH
56.
Zurück zum Zitat Msekh MA, Sargado M, Jamshidian M, Areias P, Rabczuk T (2015) Abaqus implementation of phase field model for brittle fracture. Comput Mater Sci 96(B):472–484CrossRef Msekh MA, Sargado M, Jamshidian M, Areias P, Rabczuk T (2015) Abaqus implementation of phase field model for brittle fracture. Comput Mater Sci 96(B):472–484CrossRef
57.
Zurück zum Zitat Hauptmann R, Schweizerhof K, Doll S (2000) Extension of the solid-shell concept for application to large elastic and large elastoplastic deformations. Int J Numer Methods Eng 49:1121–1141CrossRefMATH Hauptmann R, Schweizerhof K, Doll S (2000) Extension of the solid-shell concept for application to large elastic and large elastoplastic deformations. Int J Numer Methods Eng 49:1121–1141CrossRefMATH
58.
Zurück zum Zitat Schwarze M, Reese S (2011) A reduced integration solid-shell finite element based on the EAS and the ANS concept-large deformation problems. Int J Numer Methods Eng 85:289–329MathSciNetCrossRefMATH Schwarze M, Reese S (2011) A reduced integration solid-shell finite element based on the EAS and the ANS concept-large deformation problems. Int J Numer Methods Eng 85:289–329MathSciNetCrossRefMATH
59.
Zurück zum Zitat Holzapfel G (2000) Nonlinear solid mechanics. Wiley, New York ISBN: 978–0–471–82319–3MATH Holzapfel G (2000) Nonlinear solid mechanics. Wiley, New York ISBN: 978–0–471–82319–3MATH
60.
Zurück zum Zitat Rah K, Van Paepegem W, Habraken AM, Degrieck J, de Sousa RA, Valente RAF (2013) Optimal low-order fully integrated solid-shell elements. Comput Mech 51(3):309–326MathSciNetCrossRefMATH Rah K, Van Paepegem W, Habraken AM, Degrieck J, de Sousa RA, Valente RAF (2013) Optimal low-order fully integrated solid-shell elements. Comput Mech 51(3):309–326MathSciNetCrossRefMATH
61.
Zurück zum Zitat Büchter N, Ramm E, Roehl D (1994) Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept. Int J Numer Meth Eng 37:2551–2568CrossRefMATH Büchter N, Ramm E, Roehl D (1994) Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept. Int J Numer Meth Eng 37:2551–2568CrossRefMATH
62.
Zurück zum Zitat Zienkiewicz OC, Taylor RL (2000) The finite element method. Butterworth–Heinemann, Woburn, 5th ed, Vol. I. ISBN: 0750650494 Zienkiewicz OC, Taylor RL (2000) The finite element method. Butterworth–Heinemann, Woburn, 5th ed, Vol. I. ISBN: 0750650494
63.
Zurück zum Zitat Reinoso J, Blázquez A (2016) Application and finite element implementation of 7-parameter shell element for geometrically nonlinear analysis of layered CFRP composites. Compos Struct 139:263–276CrossRef Reinoso J, Blázquez A (2016) Application and finite element implementation of 7-parameter shell element for geometrically nonlinear analysis of layered CFRP composites. Compos Struct 139:263–276CrossRef
64.
Zurück zum Zitat Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput Meth Appl Mech Eng 110(3):359–386CrossRefMATH Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput Meth Appl Mech Eng 110(3):359–386CrossRefMATH
65.
Zurück zum Zitat Hocine N, Abdelaziz M, Imad A (2002) Fracture problems of rubbers: J-integral estimation based upon factors and an investigation on the strain energy density distribution as a local criterion. Int J Fract 117:1–23CrossRef Hocine N, Abdelaziz M, Imad A (2002) Fracture problems of rubbers: J-integral estimation based upon factors and an investigation on the strain energy density distribution as a local criterion. Int J Fract 117:1–23CrossRef
Metadaten
Titel
Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation
verfasst von
J. Reinoso
M. Paggi
C. Linder
Publikationsdatum
17.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2017
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1386-3

Weitere Artikel der Ausgabe 6/2017

Computational Mechanics 6/2017 Zur Ausgabe

Neuer Inhalt