Skip to main content

2020 | OriginalPaper | Buchkapitel

13. Phase Noise in Autonomous Oscillators

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to its importance in circuit design, the problem of modeling phase noise in autonomous oscillators has attracted considerable attention over the last 50 years. Noteworthy phase noise studies include a spectrum model based on a feedback circuit oscillator parametrization proposed by Leeson and the impulse sensitivity function model proposed by Hajimiri and Lee. Unfortunately, even though these models offer valuable insights for oscillator design, they exhibit significant defects, such as their failure to predict a Lorentzian power spectral density for the oscillator tones affected by noise. The primary reason for this failure is that most early phase noise theories were based on linear perturbations. The first satisfactory nonlinear phase noise theory was proposed by Kaertner, with significant later refinements by Demir, Mehrothra, and Roychowdury. The key insight of this approach is that for a stable oscillator, random fluctuations in directions away from the oscillator trajectory remain contained due to the inherent trajectory stability, but fluctuations along the trajectory direction accumulate since they are not subjected to a restoring force. The model constructed by this approach relies on rather simplistic approximations, such as the neglect of amplitude fluctuations about the noiseless oscillator trajectory, but it results in a single scalar diffusion equation for the phase noise. This model can be simplified further by noticing that the phase noise evolves on time scale much slower than the rate of oscillation of the oscillator, so that an averaging method can be employed to describe the slow time-scale evolution of the phase noise. This averaging operation reveals that on a slow time-scale, the phase noise behaves like a scaled Wiener process, where the scaling parameter represents therefore the only and most important parameter of the model. This slow time-scale model can then be used to compute the oscillator autocorrelation and its power spectral density, which shows that the effect of phase noise is to smear the pure impulsive spectral lines of the noiseless oscillator into narrow Lorentzian shaped spectra, which conform with experimental observations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329–330, Feb. 1966.CrossRef D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329–330, Feb. 1966.CrossRef
2.
Zurück zum Zitat A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid State Circuits, vol. 33, pp. 179–194, 1998.CrossRef A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid State Circuits, vol. 33, pp. 179–194, 1998.CrossRef
3.
Zurück zum Zitat A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators. New York: Springer Verlag, 1999. A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators. New York: Springer Verlag, 1999.
4.
Zurück zum Zitat F. X. Kaertner, “Analysis of white and f −α noise in oscillators,” Int. J. Circuit theory and Applications, vol. 18, pp. 485–519, 1990.CrossRef F. X. Kaertner, “Analysis of white and f α noise in oscillators,” Int. J. Circuit theory and Applications, vol. 18, pp. 485–519, 1990.CrossRef
5.
Zurück zum Zitat A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscillators: a unifying theory and numerical methods for characterization,” IEEE Trans. Circuits Syst. I, pp. 655–674, May 2000.CrossRef A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscillators: a unifying theory and numerical methods for characterization,” IEEE Trans. Circuits Syst. I, pp. 655–674, May 2000.CrossRef
6.
Zurück zum Zitat O. Şuvak and A. Demir, “On phase models for oscillators,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 30, pp. 972–985, July 2011.CrossRef O. Şuvak and A. Demir, “On phase models for oscillators,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 30, pp. 972–985, July 2011.CrossRef
7.
Zurück zum Zitat G. Papanicolaou, “Introduction to the asymptotic analysis of stochastic equations,” in Modern Modeling of Continuum Phenomena (R. C. DiPrima, ed.), vol. 16 of Lectures in Applied Mathematics, pp. 109–147, Providence, RI: Amer. Math. Society, 1977. G. Papanicolaou, “Introduction to the asymptotic analysis of stochastic equations,” in Modern Modeling of Continuum Phenomena (R. C. DiPrima, ed.), vol. 16 of Lectures in Applied Mathematics, pp. 109–147, Providence, RI: Amer. Math. Society, 1977.
8.
Zurück zum Zitat G. A. Pavliotis and A. M. Stuart, Multiscale Methods– Averaging and Homogenization. New York: Springer, 2008.MATH G. A. Pavliotis and A. M. Stuart, Multiscale Methods– Averaging and Homogenization. New York: Springer, 2008.MATH
9.
Zurück zum Zitat L. Perko, Differential Equations and Dynamical Systems. New York: Springer Verlag, 1991.CrossRef L. Perko, Differential Equations and Dynamical Systems. New York: Springer Verlag, 1991.CrossRef
10.
11.
Zurück zum Zitat D. Wang, S. Zhou, and J. Yu, “The existence of closed trajectories in the van der Pol oscillator,” in Proc. IEEE Conf. on Communications, Circuits and Systems, vol. 2, pp. 1629–1632, 2002. D. Wang, S. Zhou, and J. Yu, “The existence of closed trajectories in the van der Pol oscillator,” in Proc. IEEE Conf. on Communications, Circuits and Systems, vol. 2, pp. 1629–1632, 2002.
12.
Zurück zum Zitat E. A. Coddington and R. Carlson, Linear Ordinary Differential Equations. Philadelphia, PA: Soc. Industrial and Applied Mathematics, 1997.CrossRef E. A. Coddington and R. Carlson, Linear Ordinary Differential Equations. Philadelphia, PA: Soc. Industrial and Applied Mathematics, 1997.CrossRef
13.
Zurück zum Zitat R. W. Brockett, Finite Dimensional Linear Systems. New York: J. Wiley & Sons, 1970. Republished in 2015 by the Soc. for Indust. and Applied Math., Philadelphia, PA. R. W. Brockett, Finite Dimensional Linear Systems. New York: J. Wiley & Sons, 1970. Republished in 2015 by the Soc. for Indust. and Applied Math., Philadelphia, PA.
14.
Zurück zum Zitat G. J. Coram, “A simple 2-D oscillator to determine the correct decomposition of perturbations into amplitude and phase noise,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 896–898, July 2001.MathSciNetCrossRef G. J. Coram, “A simple 2-D oscillator to determine the correct decomposition of perturbations into amplitude and phase noise,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 896–898, July 2001.MathSciNetCrossRef
15.
Zurück zum Zitat A. T. Winfree, The Geometry of Biological Time, second edition. Berlin: Springer Verlag, 2001.CrossRef A. T. Winfree, The Geometry of Biological Time, second edition. Berlin: Springer Verlag, 2001.CrossRef
16.
Zurück zum Zitat K. Josic, E. T. Shea-Brown, and J. Moehlis, “Isochron,” Scholarpedia, vol. 1, no. 8, p. 1361, 2006.CrossRef K. Josic, E. T. Shea-Brown, and J. Moehlis, “Isochron,” Scholarpedia, vol. 1, no. 8, p. 1361, 2006.CrossRef
17.
Zurück zum Zitat T. Djurhuus, V. Krozer, J. Vidkjaer, and T. K. Johansen, “Oscillator phase noise: a geometric approach,” IEEE Trans. Circuits Syst. I, vol. 56, pp. 1373–1382, July 2009.MathSciNetCrossRef T. Djurhuus, V. Krozer, J. Vidkjaer, and T. K. Johansen, “Oscillator phase noise: a geometric approach,” IEEE Trans. Circuits Syst. I, vol. 56, pp. 1373–1382, July 2009.MathSciNetCrossRef
18.
Zurück zum Zitat A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, NY: Academic Press, 1970. Reprinted in 2007 by Dover Publications, Mineola NY. A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, NY: Academic Press, 1970. Reprinted in 2007 by Dover Publications, Mineola NY.
19.
Zurück zum Zitat F. L. Traversa and F. F. Bonani, “Oscillator noise: a nonlinear perturbative theory including orbital fluctuations and phase-orbital correlation,” IEEE Trans. Circuits Syst. I, vol. 58, pp. 2485–2497, Oct. 2011.MathSciNetCrossRef F. L. Traversa and F. F. Bonani, “Oscillator noise: a nonlinear perturbative theory including orbital fluctuations and phase-orbital correlation,” IEEE Trans. Circuits Syst. I, vol. 58, pp. 2485–2497, Oct. 2011.MathSciNetCrossRef
20.
Zurück zum Zitat O. Şuvak and A. Demir, “Quadratic approximations for the isochrons of oscillators: a general theory, advanced numerical methods, and accurate phase computations,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 29, pp. 1215–1228, Aug. 2010.CrossRef O. Şuvak and A. Demir, “Quadratic approximations for the isochrons of oscillators: a general theory, advanced numerical methods, and accurate phase computations,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 29, pp. 1215–1228, Aug. 2010.CrossRef
21.
Zurück zum Zitat A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Amsterdam, The Netherlands: North-Holland, 1978.MATH A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Amsterdam, The Netherlands: North-Holland, 1978.MATH
22.
Zurück zum Zitat R. Khasminskii, “On averaging principle for Ito stochastic differential equations,” Kybernetika, vol. 4, pp. 260–279, 1968. in Russian.MathSciNet R. Khasminskii, “On averaging principle for Ito stochastic differential equations,” Kybernetika, vol. 4, pp. 260–279, 1968. in Russian.MathSciNet
23.
Zurück zum Zitat R. S. Swain, J. P. Gleeson, and M. P. Kennedy, “Influence of noise intensity on the spectrum of an oscillator,” IEEE Trans. Circuits Syst. II, vol. 52, pp. 789–793, Nov. 2005.CrossRef R. S. Swain, J. P. Gleeson, and M. P. Kennedy, “Influence of noise intensity on the spectrum of an oscillator,” IEEE Trans. Circuits Syst. II, vol. 52, pp. 789–793, Nov. 2005.CrossRef
24.
Zurück zum Zitat F. L. Traversa, M. Bonnin, F. Corinto, and F. Bonani, “Noise in oscillators: a review of state space decomposition approaches,” J. Comput. Electron., vol. 14, pp. 51–61, 2015.CrossRef F. L. Traversa, M. Bonnin, F. Corinto, and F. Bonani, “Noise in oscillators: a review of state space decomposition approaches,” J. Comput. Electron., vol. 14, pp. 51–61, 2015.CrossRef
25.
Zurück zum Zitat M. Bonnin and F. Corinto, “Phase noise and noise induced frequency shift in stochastic nonlinear oscillators,” IEEE Trans. Circuits Syst. I, vol. 60, pp. 2104–2115, Aug. 2013.MathSciNetCrossRef M. Bonnin and F. Corinto, “Phase noise and noise induced frequency shift in stochastic nonlinear oscillators,” IEEE Trans. Circuits Syst. I, vol. 60, pp. 2104–2115, Aug. 2013.MathSciNetCrossRef
26.
Zurück zum Zitat M. Lax, “Classical noise. V. Noise in self-sustained oscillators,” Phys. Review, vol. 160, pp. 290–307, Aug. 1967.CrossRef M. Lax, “Classical noise. V. Noise in self-sustained oscillators,” Phys. Review, vol. 160, pp. 290–307, Aug. 1967.CrossRef
27.
Zurück zum Zitat C. M. Bender and S. A. Orzag, Advanced Methods for Scientists and Engineers. New York: McGraw-Hill, 1978. C. M. Bender and S. A. Orzag, Advanced Methods for Scientists and Engineers. New York: McGraw-Hill, 1978.
Metadaten
Titel
Phase Noise in Autonomous Oscillators
verfasst von
Bernard C. Levy
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-22297-0_13

Neuer Inhalt