Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 10/2016

01.08.2016

Phase Transformation Behavior of Medium Manganese Steels with 3 Wt Pct Aluminum and 3 Wt Pct Silicon During Intercritical Annealing

verfasst von: Binhan Sun, Fateh Fazeli, Colin Scott, Stephen Yue

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Medium manganese steels alloyed with sufficient aluminum and silicon amounts contain high fractions of retained austenite adjustable to various transformation-induced plasticity/twinning-induced plasticity effects, in addition to a reduced density suitable for lightweight vehicle body-in-white assemblies. Two hot rolled medium manganese steels containing 3 wt pct aluminum and 3 wt pct silicon were subjected to different annealing treatments in the present study. The evolution of the microstructure in terms of austenite transformation upon reheating and the subsequent austenite decomposition during quenching was investigated. Manganese content of the steels prevailed the microstructural response. The microstructure of the leaner alloy with 7 wt pct Mn (7Mn) was substantially influenced by the annealing temperature, including the variation of phase constituents, the morphology and composition of intercritical austenite, the Ms temperature and the retained austenite fraction. In contrast, the richer variant 10 wt pct Mn steel (10Mn) exhibited a substantially stable ferrite-austenite duplex phase microstructure containing a fixed amount of retained austenite which was found to be independent of the variations of intercritical annealing temperature. Austenite formation from hot band ferrite-pearlite/bainite mixtures was very rapid during annealing at 1273 K (1000 °C), regardless of Mn contents. Austenite growth was believed to be controlled at early stages by carbon diffusion following pearlite/bainite dissolution. The redistribution of Mn in ferrite and particularly in austenite at later stages was too subtle to result in a measureable change in austenite fraction. Further, the hot band microstructure of both steels contained a large fraction of coarse-grained δ-ferrite, which remained almost unchanged during intercritical annealing. A recently developed thermodynamic database was evaluated using the experimental data. The new database achieved a better agreement with the experimental results for the 7Mn steel compared with the existing commercial TCFE database; however, some discrepancy in the predicted phase fractions and compositions still existed. The phase transformation behavior of the two steels during annealing and its implication on the design of high aluminum-silicon medium manganese steels were discussed in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Fonstein: Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties, Springer International Publishing Switzerland 2015, 2015, pp. 297–323CrossRef N. Fonstein: Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties, Springer International Publishing Switzerland 2015, 2015, pp. 297–323CrossRef
2.
Zurück zum Zitat 2. Y.K. Lee and J. Han: Mater. Sci. Technol., 2015, vol. 31, pp. 843-56.CrossRef 2. Y.K. Lee and J. Han: Mater. Sci. Technol., 2015, vol. 31, pp. 843-56.CrossRef
3.
Zurück zum Zitat 3. O. Bouaziz, H. Zurob, and M. Huang: Steel Res. Int., 2013. vol. 84, pp. 937-47. 3. O. Bouaziz, H. Zurob, and M. Huang: Steel Res. Int., 2013. vol. 84, pp. 937-47.
5.
Zurück zum Zitat 5. H. Aydin, E. Essadiqi, I.H. Jung, and S. Yue: Mater. Sci. Eng. A, 2013, vol. 564, pp. 501-08.CrossRef 5. H. Aydin, E. Essadiqi, I.H. Jung, and S. Yue: Mater. Sci. Eng. A, 2013, vol. 564, pp. 501-08.CrossRef
6.
Zurück zum Zitat 6. A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges: Mater. Sci. Eng. A, 2012, vol. 542, pp. 31-39.CrossRef 6. A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges: Mater. Sci. Eng. A, 2012, vol. 542, pp. 31-39.CrossRef
7.
Zurück zum Zitat 7. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3691-702.CrossRef 7. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3691-702.CrossRef
8.
Zurück zum Zitat 8. S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5018-24.CrossRef 8. S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5018-24.CrossRef
9.
Zurück zum Zitat 9. S.Lee, S.J. Lee, S.S. Kumar, K. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3638-51.CrossRef 9. S.Lee, S.J. Lee, S.S. Kumar, K. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3638-51.CrossRef
10.
Zurück zum Zitat 10. W. Cao, C. Wang, J. Shi, M. Wang, W. Hui, and H. Dong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6661-66.CrossRef 10. W. Cao, C. Wang, J. Shi, M. Wang, W. Hui, and H. Dong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6661-66.CrossRef
11.
Zurück zum Zitat 11. H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10, pp. 621-26.CrossRef 11. H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10, pp. 621-26.CrossRef
12.
Zurück zum Zitat 12. E. De Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin: Scripta Mater., 2011, vol. 64, pp. 185-88.CrossRef 12. E. De Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin: Scripta Mater., 2011, vol. 64, pp. 185-88.CrossRef
13.
Zurück zum Zitat P.J. Gibbs: Design Considerations for the Third Generation Advanced High Strength Steel, Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO, United States, 2012, pp. 1-79. P.J. Gibbs: Design Considerations for the Third Generation Advanced High Strength Steel, Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO, United States, 2012, pp. 1-79.
14.
Zurück zum Zitat 14. S. Lee, S.J. Lee, and B.C. De Cooman: Scripta Mater., 2011, vol. 65, pp. 225-28.CrossRef 14. S. Lee, S.J. Lee, and B.C. De Cooman: Scripta Mater., 2011, vol. 65, pp. 225-28.CrossRef
15.
Zurück zum Zitat 15. S. Lee and B.C. De Cooman: Steel Research Int., 2015, vol 86. pp.1-9.CrossRef 15. S. Lee and B.C. De Cooman: Steel Research Int., 2015, vol 86. pp.1-9.CrossRef
16.
Zurück zum Zitat 16. S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45, pp. 6039-52.CrossRef 16. S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45, pp. 6039-52.CrossRef
17.
Zurück zum Zitat 17. B. Sun, H. Aydin, F. Fazeli, and S. Yue: Metall. Mater. Trans. A, 2016, vol.47, pp. 1782-91.CrossRef 17. B. Sun, H. Aydin, F. Fazeli, and S. Yue: Metall. Mater. Trans. A, 2016, vol.47, pp. 1782-91.CrossRef
18.
Zurück zum Zitat 18. S.S. Sohn, K. Choi, J.H. Kwak, N.J. Kim, and S. Lee: Acta Mater., 2014, vol. 78, pp. 181-89.CrossRef 18. S.S. Sohn, K. Choi, J.H. Kwak, N.J. Kim, and S. Lee: Acta Mater., 2014, vol. 78, pp. 181-89.CrossRef
19.
Zurück zum Zitat 19. C.Y. Lee, J. Jeong, J. Han, S.J. Lee, S. Lee, and Y.K. Lee: Acta Mater., 2015, vol. 84, pp. 1-8.CrossRef 19. C.Y. Lee, J. Jeong, J. Han, S.J. Lee, S. Lee, and Y.K. Lee: Acta Mater., 2015, vol. 84, pp. 1-8.CrossRef
20.
Zurück zum Zitat 20. S. Lee, K. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2356-63.CrossRef 20. S. Lee, K. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2356-63.CrossRef
21.
Zurück zum Zitat 21. H. Kim, D.W. Suh, and N.J. Kim: Sci. Technol. Adv. Mater., 2013, vol. 14, pp. 1-11.CrossRef 21. H. Kim, D.W. Suh, and N.J. Kim: Sci. Technol. Adv. Mater., 2013, vol. 14, pp. 1-11.CrossRef
22.
Zurück zum Zitat 22. H. Aydin, I.H. Jung, E. Essadiqi, and S. Yue: Mater. Sci. Eng. A, 2014, vol. 591, pp. 90-96.CrossRef 22. H. Aydin, I.H. Jung, E. Essadiqi, and S. Yue: Mater. Sci. Eng. A, 2014, vol. 591, pp. 90-96.CrossRef
23.
Zurück zum Zitat 23. K. Jeong, J.E. Jin, Y.S. Jung, S. Kang, and Y.K. Lee: Acta Mater., 2013, vol. 61, pp. 3399-410.CrossRef 23. K. Jeong, J.E. Jin, Y.S. Jung, S. Kang, and Y.K. Lee: Acta Mater., 2013, vol. 61, pp. 3399-410.CrossRef
24.
Zurück zum Zitat 24. B.W. Oh, S.J. Cho, Y.G. Kim, Y.P. Kim, W.S. Kim, and S.H. Hong: Mater. Sci. Eng. A, 1995, vol. 197, pp. 147-56.CrossRef 24. B.W. Oh, S.J. Cho, Y.G. Kim, Y.P. Kim, W.S. Kim, and S.H. Hong: Mater. Sci. Eng. A, 1995, vol. 197, pp. 147-56.CrossRef
25.
Zurück zum Zitat 25. D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim: Metall. Mater. Trans. A, 2010, vol. 41, pp. 397-408.CrossRef 25. D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim: Metall. Mater. Trans. A, 2010, vol. 41, pp. 397-408.CrossRef
26.
Zurück zum Zitat 26. S. Lee, Y. Estrin, and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol.44, pp. 3136-46.CrossRef 26. S. Lee, Y. Estrin, and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol.44, pp. 3136-46.CrossRef
27.
Zurück zum Zitat B. Sun, H. Aydin, F. Fazeli and S. Yue: MS and T 2015 Conf. Proc., Columbus, United States, 2015, pp. 893–900 B. Sun, H. Aydin, F. Fazeli and S. Yue: MS and T 2015 Conf. Proc., Columbus, United States, 2015, pp. 893–900
28.
Zurück zum Zitat 28. R.A. Young: The Rietveld Method, International Union of Crystallograhy, Oxford, New York, 1995. 28. R.A. Young: The Rietveld Method, International Union of Crystallograhy, Oxford, New York, 1995.
29.
Zurück zum Zitat ASTM Standard E1245 - 03: Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis, ASTM International, West Conshohocken, PA, 2012. www.astm.org. ASTM Standard E1245 - 03: Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis, ASTM International, West Conshohocken, PA, 2012. www.​astm.​org.
30.
Zurück zum Zitat ASTM Standard E112 - 12: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2012. www.astm.org. ASTM Standard E112 - 12: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2012. www.​astm.​org.
31.
Zurück zum Zitat N.H van Dijk, A.M Butt, L. Zhao, J. Sietsma, S.E Offerman, J.P Wright, and S. Van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439-47.CrossRef N.H van Dijk, A.M Butt, L. Zhao, J. Sietsma, S.E Offerman, J.P Wright, and S. Van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439-47.CrossRef
32.
Zurück zum Zitat 32. D.J. Dyson and B. Holmes: J Iron Steel Inst., 1970, vol. 208, pp. 469-74. 32. D.J. Dyson and B. Holmes: J Iron Steel Inst., 1970, vol. 208, pp. 469-74.
33.
Zurück zum Zitat BD Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Pub. Co., Cambridge, 1978, pp. 459. BD Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Pub. Co., Cambridge, 1978, pp. 459.
34.
Zurück zum Zitat 34. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738-46.CrossRef 34. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738-46.CrossRef
35.
Zurück zum Zitat 35. S.J. Lee, S. Lee, and B.C. De Cooman: Int. J. Mater. Res., 2013, vol. 104, pp. 423-29.CrossRef 35. S.J. Lee, S. Lee, and B.C. De Cooman: Int. J. Mater. Res., 2013, vol. 104, pp. 423-29.CrossRef
36.
Zurück zum Zitat 36. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59-60.CrossRef 36. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59-60.CrossRef
37.
Zurück zum Zitat 37. S.J. Lee and C.J. Van Tyne: Metall. Mater. Trans. A, 2012, vol. 43, pp. 422-27.CrossRef 37. S.J. Lee and C.J. Van Tyne: Metall. Mater. Trans. A, 2012, vol. 43, pp. 422-27.CrossRef
38.
Zurück zum Zitat 38. S.J. Lee, S. Lee, and B.C. De Cooman: Scripta Mater., 2011, vol. 64, pp. 649-52.CrossRef 38. S.J. Lee, S. Lee, and B.C. De Cooman: Scripta Mater., 2011, vol. 64, pp. 649-52.CrossRef
39.
Zurück zum Zitat 39. M. Cai, Z. Li, Q. Chao, and P.D. Hodgson: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5624-34.CrossRef 39. M. Cai, Z. Li, Q. Chao, and P.D. Hodgson: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5624-34.CrossRef
40.
Zurück zum Zitat International Molybdenum Association (IMOA): Practical guidelines for the fabrication of duplex stainless steels, 2nd ed., International Molybdenum Association (IMOA), London, UK, 2009, pp. 10–13. International Molybdenum Association (IMOA): Practical guidelines for the fabrication of duplex stainless steels, 2nd ed., International Molybdenum Association (IMOA), London, UK, 2009, pp. 10–13.
41.
Zurück zum Zitat 41. S.W. Hwanga, J.H. Jib, E.G. Leeb, and K.T. Park: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5196-203.CrossRef 41. S.W. Hwanga, J.H. Jib, E.G. Leeb, and K.T. Park: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5196-203.CrossRef
42.
Zurück zum Zitat 42. D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2013, vol. 44, pp. 286-93.CrossRef 42. D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2013, vol. 44, pp. 286-93.CrossRef
43.
44.
45.
Zurück zum Zitat B. Hallstedt, A.V. Khvan, B.B. Lindahl, and M. Selleby: CALPHAD XLIV, Loano, Italy, 2015, unpublished research B. Hallstedt, A.V. Khvan, B.B. Lindahl, and M. Selleby: CALPHAD XLIV, Loano, Italy, 2015, unpublished research
46.
Zurück zum Zitat 46. G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12, pp. 1419-28.CrossRef 46. G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12, pp. 1419-28.CrossRef
47.
Zurück zum Zitat 47. X.L. Cai, A.J. Garratt-Reed, and W.S. Owen: Metall. Trans. A, 1985, vol. 16, pp. 543-57.CrossRef 47. X.L. Cai, A.J. Garratt-Reed, and W.S. Owen: Metall. Trans. A, 1985, vol. 16, pp. 543-57.CrossRef
49.
Zurück zum Zitat 49. A. Arlazarov: Evolution of Microstructure and Mechanical Properties of Medium Mn Steels and Their Relationship, University of Lorraine, France, 2015, pp. 109-17. 49. A. Arlazarov: Evolution of Microstructure and Mechanical Properties of Medium Mn Steels and Their Relationship, University of Lorraine, France, 2015, pp. 109-17.
50.
Zurück zum Zitat Q. Lai: Optimization of the Microstructure of Ferritic-Martensitic Steels with 3.5 wt. % Mn: Phase Transformations and Micromechanical Modeling, Joseph Fourier University, France, 2014, pp. 44–64. Q. Lai: Optimization of the Microstructure of Ferritic-Martensitic Steels with 3.5 wt. % Mn: Phase Transformations and Micromechanical Modeling, Joseph Fourier University, France, 2014, pp. 44–64.
51.
Zurück zum Zitat 51. M. Gouné, P. Maugis, and J. Drillet: J. Mater. Sci. Technol., 2012, vol. 28, pp. 728-36.CrossRef 51. M. Gouné, P. Maugis, and J. Drillet: J. Mater. Sci. Technol., 2012, vol. 28, pp. 728-36.CrossRef
52.
Zurück zum Zitat 52. G.R. Speich, A. Szirmae, and M.J. Richards: Trans. TMS-AIME, 1969, vol. 245, pp. 1063-74. 52. G.R. Speich, A. Szirmae, and M.J. Richards: Trans. TMS-AIME, 1969, vol. 245, pp. 1063-74.
53.
Zurück zum Zitat 53. J.R. Yang and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1989, vol. 118, pp 155-70.CrossRef 53. J.R. Yang and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1989, vol. 118, pp 155-70.CrossRef
54.
Zurück zum Zitat 54. C. Wells and R.F. Mehl: Trans. Am. Inst. Min. Met. Pet. Eng, 1941, vol. 145, pp. 315-28. 54. C. Wells and R.F. Mehl: Trans. Am. Inst. Min. Met. Pet. Eng, 1941, vol. 145, pp. 315-28.
55.
56.
Zurück zum Zitat G. Neumann and C. Tuijn: Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, 1st ed., Elsevier Ltd., Oxford, 2009, pp. 261-274. G. Neumann and C. Tuijn: Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, 1st ed., Elsevier Ltd., Oxford, 2009, pp. 261-274.
57.
Zurück zum Zitat 57. J.S. Kirkaldy, P.N. Smith, and R.C. Sharma: Metall. Trans. B, 1973, vol.4, pp. 624-25.CrossRef 57. J.S. Kirkaldy, P.N. Smith, and R.C. Sharma: Metall. Trans. B, 1973, vol.4, pp. 624-25.CrossRef
Metadaten
Titel
Phase Transformation Behavior of Medium Manganese Steels with 3 Wt Pct Aluminum and 3 Wt Pct Silicon During Intercritical Annealing
verfasst von
Binhan Sun
Fateh Fazeli
Colin Scott
Stephen Yue
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 10/2016
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-016-3678-1

Weitere Artikel der Ausgabe 10/2016

Metallurgical and Materials Transactions A 10/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.