Skip to main content
Erschienen in: Physics of Metals and Metallography 3/2020

01.03.2020 | THEORY OF METALS

Phase Transformations in Ni(Co)–Mn(Cr,C)–(In,Sn) Alloys: An Ab Initio Study

verfasst von: V. D. Buchelnikov, V. V. Sokolovskiy, O. N. Miroshkina, D. R. Baigutlin, M. A. Zagrebin

Erschienen in: Physics of Metals and Metallography | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract—The phase transformations in the Heusler alloys of Ni(Co)–Mn(Cr,C)–In and Ni(Co)–Mn(Cr,C)–Sn(Al) have been studied in this work using the density-functional theory. The possibility of martensitic phase transitions from the cubic L21-structure into tetragonal L10-state has been predicted, and the transition temperatures have been estimated. Energetically favorable magnetic configurations, lattice parameters, and magnetic moments of austenite and martensite phases have been determined. The Curie temperatures and elastic moduli of cubic phases of alloys have been calculated. In Ni–Mn–Sn alloys with Co addition, the effect of exchange-correlation functional on the ground state has been investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, O. Gutfleisch, “Giant magnetocaloric effect driven by structural transitions,” Nature Mater. 11, 620–626 (2012).CrossRef J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, O. Gutfleisch, “Giant magnetocaloric effect driven by structural transitions,” Nature Mater. 11, 620–626 (2012).CrossRef
2.
Zurück zum Zitat T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni–Mn–In–Co,” Appl. Phys. Lett. 106, 021901 (2015).CrossRef T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni–Mn–In–Co,” Appl. Phys. Lett. 106, 021901 (2015).CrossRef
3.
Zurück zum Zitat D. Y. Cong, S. Roth, and L. Schultz, “Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys,” Acta Mater. 60, 5335–5351 (2012).CrossRef D. Y. Cong, S. Roth, and L. Schultz, “Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys,” Acta Mater. 60, 5335–5351 (2012).CrossRef
4.
Zurück zum Zitat V. K. Sharma, M. K. Chattopadhyay, L. S. Sharath Chandra, and S. B. Roy, “Elevating the temperature regime of the large magnetocaloric effect in a Ni–Mn–In alloy towards room temperature,” J. Phys. D: Appl. Phys. 44, 145002 (2011).CrossRef V. K. Sharma, M. K. Chattopadhyay, L. S. Sharath Chandra, and S. B. Roy, “Elevating the temperature regime of the large magnetocaloric effect in a Ni–Mn–In alloy towards room temperature,” J. Phys. D: Appl. Phys. 44, 145002 (2011).CrossRef
5.
Zurück zum Zitat V. K. Sharma, M. K. Chattopadhyay, L. S. Sharath Chandra, A. Khandelwal, R. K. Meena, and S. B. Roy, “Scaling of the isothermal entropy change and magnetoresistance in Ni–Mn–In based off-stoichiometric Heusler alloys,” Eur. Phys. J. Appl. Phys. 62, 30601 (2013).CrossRef V. K. Sharma, M. K. Chattopadhyay, L. S. Sharath Chandra, A. Khandelwal, R. K. Meena, and S. B. Roy, “Scaling of the isothermal entropy change and magnetoresistance in Ni–Mn–In based off-stoichiometric Heusler alloys,” Eur. Phys. J. Appl. Phys. 62, 30601 (2013).CrossRef
6.
Zurück zum Zitat V. Sánchez-Alarcos, V. Recarte, J. I. Pérez-Landazábal, J. R. Chapelon, and J. A. Rodríguez-Velamazán, “Structural and magnetic properties of Cr-doped Ni–Mn–In metamagnetic shape memory alloys,” J. Phys. D: Appl. Phys. 44, 395001 (2011).CrossRef V. Sánchez-Alarcos, V. Recarte, J. I. Pérez-Landazábal, J. R. Chapelon, and J. A. Rodríguez-Velamazán, “Structural and magnetic properties of Cr-doped Ni–Mn–In metamagnetic shape memory alloys,” J. Phys. D: Appl. Phys. 44, 395001 (2011).CrossRef
7.
Zurück zum Zitat M. Khan, J. Jung, S. S. Stoyko, A. Mar, A. Quetz, T. Samanta, I. Dubenko, N. Ali, S. Stadler, and K. H. Chow, “The role of Ni–Mn hybridization on the martensitic phase transitions in Mn-rich Heusler alloys,” Appl. Phys. Lett. 100, 172403 (2012).CrossRef M. Khan, J. Jung, S. S. Stoyko, A. Mar, A. Quetz, T. Samanta, I. Dubenko, N. Ali, S. Stadler, and K. H. Chow, “The role of Ni–Mn hybridization on the martensitic phase transitions in Mn-rich Heusler alloys,” Appl. Phys. Lett. 100, 172403 (2012).CrossRef
8.
Zurück zum Zitat M. Khan, I. Dubenko, S. Stadler, J. Jung, S. S. Stoyko, A. Mar, A. Quetz, T. Samanta, N. Ali, and K. H. Chow, “Enhancement of ferromagnetism by Cr doping in Ni–Mn–Cr–Sb Heusler alloys,” Appl. Phys. Lett. 102, 112402 (2013).CrossRef M. Khan, I. Dubenko, S. Stadler, J. Jung, S. S. Stoyko, A. Mar, A. Quetz, T. Samanta, N. Ali, and K. H. Chow, “Enhancement of ferromagnetism by Cr doping in Ni–Mn–Cr–Sb Heusler alloys,” Appl. Phys. Lett. 102, 112402 (2013).CrossRef
9.
Zurück zum Zitat M. A. Zagrebin, V. V. Sokolovskiy, and V. D. Buchelnikov, “Ground state and magnetic properties of the Cr-doped Ni–Mn–(Ga, Ge, In, Sn) alloys: Insights from ab initio study,” J. Magn. Magn. Mater. 470, 123–126 (2019).CrossRef M. A. Zagrebin, V. V. Sokolovskiy, and V. D. Buchelnikov, “Ground state and magnetic properties of the Cr-doped Ni–Mn–(Ga, Ge, In, Sn) alloys: Insights from ab initio study,” J. Magn. Magn. Mater. 470, 123–126 (2019).CrossRef
10.
Zurück zum Zitat V. V. Sokolovskiy, P. Entel, V. D. Buchelnikov, and M. Gruner, “Achieving large magnetocaloric effects in Co-and Cr-substituted Heusler alloys: Predictions from first-principles and Monte Carlo studies,” Phys. Rev. B 91, 220409(R) (2015).CrossRef V. V. Sokolovskiy, P. Entel, V. D. Buchelnikov, and M. Gruner, “Achieving large magnetocaloric effects in Co-and Cr-substituted Heusler alloys: Predictions from first-principles and Monte Carlo studies,” Phys. Rev. B 91, 220409(R) (2015).CrossRef
11.
Zurück zum Zitat Sokolovskiy V.V., Buchelnikov V.D., Gruner M., Entel P., “First-Principles Calculations of Magnetic Properties of Cr-Doped Ni45Co5Mn37In13 Heusler Alloys,” IEEE Trans. Mag. 51, 2502504 (2015).CrossRef Sokolovskiy V.V., Buchelnikov V.D., Gruner M., Entel P., “First-Principles Calculations of Magnetic Properties of Cr-Doped Ni45Co5Mn37In13 Heusler Alloys,” IEEE Trans. Mag. 51, 2502504 (2015).CrossRef
12.
Zurück zum Zitat V. D. Buchelnikov, V. V. Sokolovskiy, M. Gruner, and P. Entel, “Magnetic States of the Ni1.75Co0.25Mn1.25Cr0.25In0.5 Heusler Alloy,” IEEE Trans. Mag. 51, 2502104 (2015).CrossRef V. D. Buchelnikov, V. V. Sokolovskiy, M. Gruner, and P. Entel, “Magnetic States of the Ni1.75Co0.25Mn1.25Cr0.25In0.5 Heusler Alloy,” IEEE Trans. Mag. 51, 2502104 (2015).CrossRef
13.
Zurück zum Zitat V. V. Sokolovskiy, M. A. Zagrebin, and V. D. Buchelnikov, “Magnetocaloric effect in Ni–Co–Mn–(Sn,Al) Heusler alloys: Theoretical study,” J. Magn. Magn. Mater. 459, 295–300 (2018).CrossRef V. V. Sokolovskiy, M. A. Zagrebin, and V. D. Buchelnikov, “Magnetocaloric effect in Ni–Co–Mn–(Sn,Al) Heusler alloys: Theoretical study,” J. Magn. Magn. Mater. 459, 295–300 (2018).CrossRef
14.
Zurück zum Zitat S. Pandey, A. Quetz, A. Aryal, A. Us Saleheen, I. Rodionov, M. Blinov, M. Prudnikova, I. Dubenko, V. Prudnikov, D. Mazumdar, A. Granovsky, S. Stadler, and N. Ali, “Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni50Mn37In13,” AIP Adv. 7, 056433 (2017).CrossRef S. Pandey, A. Quetz, A. Aryal, A. Us Saleheen, I. Rodionov, M. Blinov, M. Prudnikova, I. Dubenko, V. Prudnikov, D. Mazumdar, A. Granovsky, S. Stadler, and N. Ali, “Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni50Mn37In13,” AIP Adv. 7, 056433 (2017).CrossRef
15.
Zurück zum Zitat G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab Initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).CrossRef G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab Initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).CrossRef
16.
Zurück zum Zitat G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1996).CrossRef G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1996).CrossRef
17.
Zurück zum Zitat P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, 864–867 (1964).CrossRef P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, 864–867 (1964).CrossRef
18.
Zurück zum Zitat W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, 1133–1138 (1965).CrossRef W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, 1133–1138 (1965).CrossRef
19.
Zurück zum Zitat P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).CrossRef P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).CrossRef
20.
Zurück zum Zitat J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).CrossRef J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).CrossRef
21.
Zurück zum Zitat J. Sun, A. Ruzsinszky, and J. P. Perdew, “Strongly constrained and appropriately normed semilocal density functional,” Phys. Rev. Lett. 115, 036402 (2015).CrossRef J. Sun, A. Ruzsinszky, and J. P. Perdew, “Strongly constrained and appropriately normed semilocal density functional,” Phys. Rev. Lett. 115, 036402 (2015).CrossRef
22.
Zurück zum Zitat J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, “Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation,” Phys. Rev. Lett. 82, 2544–2547 (1999).CrossRef J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, “Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation,” Phys. Rev. Lett. 82, 2544–2547 (1999).CrossRef
23.
Zurück zum Zitat J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids,” Phys. Rev. Lett. 91, 146401 (2003).CrossRef J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids,” Phys. Rev. Lett. 91, 146401 (2003).CrossRef
24.
Zurück zum Zitat H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).CrossRef H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).CrossRef
25.
Zurück zum Zitat C. W. Glass, A. R. Oganov, and N. Hansen, “USPEX—Evolutionary crystal structure prediction,” Comp. Phys. Comm. 175, 713–720 (2006).CrossRef C. W. Glass, A. R. Oganov, and N. Hansen, “USPEX—Evolutionary crystal structure prediction,” Comp. Phys. Comm. 175, 713–720 (2006).CrossRef
26.
Zurück zum Zitat A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, “New developments in evolutionary structure prediction algorithm USPEX,” Comp. Phys. Comm. 184, 1172–1182 (2013).CrossRef A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, “New developments in evolutionary structure prediction algorithm USPEX,” Comp. Phys. Comm. 184, 1172–1182 (2013).CrossRef
27.
Zurück zum Zitat H. Ebert, “Fully relativistic band structure calculations for magnetic solids—Formalism and application,” in Electronic Structure and Physical Properties of Solids: The Use of the LMTO Method, Ed. by H. Dreyssé, Lecture Notes in Physics, vol. 535, pp. 191–246 (1999). H. Ebert, “Fully relativistic band structure calculations for magnetic solids—Formalism and application,” in Electronic Structure and Physical Properties of Solids: The Use of the LMTO Method, Ed. by H. Dreyssé, Lecture Notes in Physics, vol. 535, pp. 191–246 (1999).
28.
Zurück zum Zitat H. Ebert, D. Ködderitzsch, and J. Minár, “Calculating condensed matter properties using the KKR-Green’s function method—Recent developments and applications,” Rep. Prog. Phys. 74, 096501 (2011).CrossRef H. Ebert, D. Ködderitzsch, and J. Minár, “Calculating condensed matter properties using the KKR-Green’s function method—Recent developments and applications,” Rep. Prog. Phys. 74, 096501 (2011).CrossRef
29.
Zurück zum Zitat D. N. Lobo, K. R. Priolkar, S. Emura, and A. K. Nigam, “Ferromagnetic interactions and martensitic transformation in Fe doped Ni–Mn–In shape memory alloys,” J. Appl. Phys. 116, 183903 (2014).CrossRef D. N. Lobo, K. R. Priolkar, S. Emura, and A. K. Nigam, “Ferromagnetic interactions and martensitic transformation in Fe doped Ni–Mn–In shape memory alloys,” J. Appl. Phys. 116, 183903 (2014).CrossRef
30.
Zurück zum Zitat K. R. Priolkar, D. N. Lobo, P. A. Bhobe, S. Emura, and A. K. Nigam, “Role of Ni–Mn hybridization in the magnetism of the martensitic state of Ni–Mn–In shape memory alloys,” Europhys. Lett. 94, 38006 (2011).CrossRef K. R. Priolkar, D. N. Lobo, P. A. Bhobe, S. Emura, and A. K. Nigam, “Role of Ni–Mn hybridization in the magnetism of the martensitic state of Ni–Mn–In shape memory alloys,” Europhys. Lett. 94, 38006 (2011).CrossRef
31.
Zurück zum Zitat T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys,” Phys. Rev. B 73, 174413 (2006).CrossRef T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys,” Phys. Rev. B 73, 174413 (2006).CrossRef
32.
Zurück zum Zitat X. Moya, D. González-Alonso, L. Mañosa, A. Planes, V. O. Garlea, T. A. Lograsso, D. L. Schlagel, J. L. Zarestky, S. Aksoy, and M. Acet, “Lattice dynamics in magnetic superelastic Ni–Mn–In alloys: Neutron scattering and ultrasonic experiments,” Phys. Rev. B 79, 214118 (2009).CrossRef X. Moya, D. González-Alonso, L. Mañosa, A. Planes, V. O. Garlea, T. A. Lograsso, D. L. Schlagel, J. L. Zarestky, S. Aksoy, and M. Acet, “Lattice dynamics in magnetic superelastic Ni–Mn–In alloys: Neutron scattering and ultrasonic experiments,” Phys. Rev. B 79, 214118 (2009).CrossRef
33.
Zurück zum Zitat P. Czaja, R. Chulist, A. Zywczak, L. Hawelek, and J. Przewóznik, “The effect of a multiphase microstructure on the inverse magnetocaloric effect in Ni–Mn–Cr–Sn metamagnetic Heusler alloys,” Magnetochemistry 3 (3), 24 (2017).CrossRef P. Czaja, R. Chulist, A. Zywczak, L. Hawelek, and J. Przewóznik, “The effect of a multiphase microstructure on the inverse magnetocaloric effect in Ni–Mn–Cr–Sn metamagnetic Heusler alloys,” Magnetochemistry 3 (3), 24 (2017).CrossRef
Metadaten
Titel
Phase Transformations in Ni(Co)–Mn(Cr,C)–(In,Sn) Alloys: An Ab Initio Study
verfasst von
V. D. Buchelnikov
V. V. Sokolovskiy
O. N. Miroshkina
D. R. Baigutlin
M. A. Zagrebin
Publikationsdatum
01.03.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 3/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20020039

Weitere Artikel der Ausgabe 3/2020

Physics of Metals and Metallography 3/2020 Zur Ausgabe