Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

Phase Transformations Under High Pressure and Large Plastic Deformations: Multiscale Theory and Interpretation of Experiments

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is known that superposition of large plastic shear at high pressure in a rotational diamond anvil cell (RDAC) or high-pressure torsion leads to numerous new phenomena, including drastic reduction in phase transformation (PT) pressure and appearance of new phases. Here, our four-scale theory and corresponding simulations are reviewed. Molecular dynamic simulations were used to determine lattice instability conditions under six components of the stress tensor, which demonstrate strong reduction of PT pressure under nonhydrostatic loading. At nanoscale, nucleation at various evolving dislocation configurations is studied utilizing a developed phase field approach. The possibility of reduction in PT pressure by an order of magnitude due to stress concentration at the shear-generated dislocation pileup is proven. At microscale, a strain-controlled kinetic equation is derived and utilized in large-strain macroscopic theory for coupled PTs and plasticity. At macroscale, the behavior of the sample in DAC and RDAC is studied using a finite-element approach. A comprehensive computational study of the effects of different material and geometric parameters is performed, and various experimental effects are reproduced. Possible misinterpretation of experimental PT pressure is demonstrated. The obtained results offer new methods for controlling PTs and searching for new high-pressure phases (HPPs), as well as methods for characterization of high-pressure PTs in traditional DAC and RDAC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Blank VD, Estrin EI (2014) Phase transitions in solids under high pressure. CRC Press, New York Blank VD, Estrin EI (2014) Phase transitions in solids under high pressure. CRC Press, New York
2.
Zurück zum Zitat Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mat Sci Eng A 652:325–352CrossRef Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mat Sci Eng A 652:325–352CrossRef
3.
Zurück zum Zitat Novikov NV, Polotnyak SB, Shvedov LK, Levitas VI (1999) Phase transitions under compression and shear in diamond anvils: experiment and theory. Superhard Mat 3:39–51 Novikov NV, Polotnyak SB, Shvedov LK, Levitas VI (1999) Phase transitions under compression and shear in diamond anvils: experiment and theory. Superhard Mat 3:39–51
4.
Zurück zum Zitat Blank VD et al (1994) Is C60 fullerite harder than diamond? Phys Lett A 188:281–286CrossRef Blank VD et al (1994) Is C60 fullerite harder than diamond? Phys Lett A 188:281–286CrossRef
5.
Zurück zum Zitat Levitas VI, Ma Y, Selvi E, Wu J, Patten J (2012) High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure. Phys Rev B 85:054114CrossRef Levitas VI, Ma Y, Selvi E, Wu J, Patten J (2012) High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure. Phys Rev B 85:054114CrossRef
6.
Zurück zum Zitat Levitas VI (2004) Continuum mechanical fundamentals of Mechanochemistry. In: Gogotsi Y, Domnich V (eds) High pressure surface science and engineering. Inst. of Physics, Bristol, Section 3, p 159–292 Levitas VI (2004) Continuum mechanical fundamentals of Mechanochemistry. In: Gogotsi Y, Domnich V (eds) High pressure surface science and engineering. Inst. of Physics, Bristol, Section 3, p 159–292
7.
Zurück zum Zitat Levitas VI (2004) High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments. Phys Rev B 70:184118CrossRef Levitas VI (2004) High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments. Phys Rev B 70:184118CrossRef
8.
Zurück zum Zitat Ji C, Levitas VI, Zhu H, Chaudhuri J, Marathe A, Ma Y (2012) Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and low pressure. Proc Natl Acad Sci USA 109:19108–19112CrossRef Ji C, Levitas VI, Zhu H, Chaudhuri J, Marathe A, Ma Y (2012) Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and low pressure. Proc Natl Acad Sci USA 109:19108–19112CrossRef
9.
Zurück zum Zitat Levitas VI, Shvedov LK (2002) Low pressure phase transformation from rhombohedral to cubic BN: experiment and theory. Phys Rev B 65:104109CrossRef Levitas VI, Shvedov LK (2002) Low pressure phase transformation from rhombohedral to cubic BN: experiment and theory. Phys Rev B 65:104109CrossRef
10.
Zurück zum Zitat Levitas VI, Javanbakht M (2015) Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach. J Mech Phys Solids 82:287–319CrossRef Levitas VI, Javanbakht M (2015) Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach. J Mech Phys Solids 82:287–319CrossRef
11.
Zurück zum Zitat Javanbakht M, Levitas VI (2015) Interaction between phase transformations and dislocations at the nanoscale. Part 2. Phase field simulation examples. J Mech Phys Solids 82:164–185CrossRef Javanbakht M, Levitas VI (2015) Interaction between phase transformations and dislocations at the nanoscale. Part 2. Phase field simulation examples. J Mech Phys Solids 82:164–185CrossRef
12.
Zurück zum Zitat Levitas VI, Javanbakht M (2014) Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale 6:162–166CrossRef Levitas VI, Javanbakht M (2014) Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale 6:162–166CrossRef
13.
Zurück zum Zitat Javanbakht M, Levitas VI (2016) Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear. Phys Rev B 94:214104CrossRef Javanbakht M, Levitas VI (2016) Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear. Phys Rev B 94:214104CrossRef
14.
Zurück zum Zitat Levitas VI, Levin VA, Zingerman KM, Freiman EI (2009) Displacive phase transitions at large strains: phase-field theory and simulations. Phys Rev Lett 103:025702CrossRef Levitas VI, Levin VA, Zingerman KM, Freiman EI (2009) Displacive phase transitions at large strains: phase-field theory and simulations. Phys Rev Lett 103:025702CrossRef
15.
Zurück zum Zitat Levitas VI (2013) Phase-field theory for martensitic phase transformations at large strains. Int J Plast 49:85–118CrossRef Levitas VI (2013) Phase-field theory for martensitic phase transformations at large strains. Int J Plast 49:85–118CrossRef
16.
Zurück zum Zitat Levitas VI (2014) Phase field approach to martensitic phase transformations with large strains and interface stresses. J Mech Phys Solids 70:154–189CrossRef Levitas VI (2014) Phase field approach to martensitic phase transformations with large strains and interface stresses. J Mech Phys Solids 70:154–189CrossRef
17.
Zurück zum Zitat Levitas VI, Javanbakht M (2015) Thermodynamically consistent phase field approach to dislocation evolution at small and large strains. J Mech Phys Solids 82:345–366CrossRef Levitas VI, Javanbakht M (2015) Thermodynamically consistent phase field approach to dislocation evolution at small and large strains. J Mech Phys Solids 82:345–366CrossRef
18.
Zurück zum Zitat Javanbakht M, Levitas VI (2016) Phase field approach to dislocation evolution at large strains: computational aspects. Int J Solids Struct 82:95–110CrossRef Javanbakht M, Levitas VI (2016) Phase field approach to dislocation evolution at large strains: computational aspects. Int J Solids Struct 82:95–110CrossRef
19.
Zurück zum Zitat Levitas VI, Chen H, Xiong L (2017) Triaxial-stress-induced homogeneous hysteresis-free first-order phase transformations with stable intermediate phases. Phys Rev Lett 118:025701CrossRef Levitas VI, Chen H, Xiong L (2017) Triaxial-stress-induced homogeneous hysteresis-free first-order phase transformations with stable intermediate phases. Phys Rev Lett 118:025701CrossRef
20.
Zurück zum Zitat Levitas VI, Chen H, Xiong L (2017) Lattice instability during phase transformations under multiaxial stress: modifed transformation work criterion. Phys Rev B 96:054118CrossRef Levitas VI, Chen H, Xiong L (2017) Lattice instability during phase transformations under multiaxial stress: modifed transformation work criterion. Phys Rev B 96:054118CrossRef
21.
Zurück zum Zitat Levitas VI, Zarechnyy OM (2006) Kinetics of strain-induced structural changes under high pressure. J Phys Chem B 110:16035–16046CrossRef Levitas VI, Zarechnyy OM (2006) Kinetics of strain-induced structural changes under high pressure. J Phys Chem B 110:16035–16046CrossRef
22.
Zurück zum Zitat Straumal BB, Kilmametov AR, Ivanisenko Y et al (2015) Phase transitions induced by severe plastic deformation: steady-state and equifinality. Int J Mat Res 106:657–664CrossRef Straumal BB, Kilmametov AR, Ivanisenko Y et al (2015) Phase transitions induced by severe plastic deformation: steady-state and equifinality. Int J Mat Res 106:657–664CrossRef
23.
Zurück zum Zitat Zharov A (1984) The polymerisation of solid monomers under conditions of deformation at a high pressure. Usp Khim 53:236–250CrossRef Zharov A (1984) The polymerisation of solid monomers under conditions of deformation at a high pressure. Usp Khim 53:236–250CrossRef
24.
Zurück zum Zitat Zharov A (1994) High pressure chemistry and physics of polymers, Kovarskii AL (ed). CRC Press, Boca Raton, Chapter 7, pp 267–301 Zharov A (1994) High pressure chemistry and physics of polymers, Kovarskii AL (ed). CRC Press, Boca Raton, Chapter 7, pp 267–301
25.
Zurück zum Zitat Levitas VI, Ma Y, Hashemi J, Holtz M, Guven N (2006) Strain-induced disorder, phase transformations and transformation induced plasticity in hexagonal boron nitride under compression and shear in a rotational diamond anvil cell: in-situ X-ray diffraction study and modeling. J Chem Phys 25:044507CrossRef Levitas VI, Ma Y, Hashemi J, Holtz M, Guven N (2006) Strain-induced disorder, phase transformations and transformation induced plasticity in hexagonal boron nitride under compression and shear in a rotational diamond anvil cell: in-situ X-ray diffraction study and modeling. J Chem Phys 25:044507CrossRef
26.
Zurück zum Zitat Levitas VI, Zarechnyy OM (2010) Modeling and simulation of strain-induced phase transformations under compression in a diamond anvil cell. Phy Rev B 82:174123CrossRef Levitas VI, Zarechnyy OM (2010) Modeling and simulation of strain-induced phase transformations under compression in a diamond anvil cell. Phy Rev B 82:174123CrossRef
27.
Zurück zum Zitat Levitas VI, Zarechnyy OM (2010) Modeling and simulation of strain-induced phase transformations under compression and torsion in a rotational diamond anvil cell. Phys Rev B 82:174124CrossRef Levitas VI, Zarechnyy OM (2010) Modeling and simulation of strain-induced phase transformations under compression and torsion in a rotational diamond anvil cell. Phys Rev B 82:174124CrossRef
28.
Zurück zum Zitat Feng B, Levitas VI, Zarechnyy OM (2013) Plastic flows and phase transformations in materials under compression in diamond anvil cell: effect of contact sliding. J Appl Phys 114:043506CrossRef Feng B, Levitas VI, Zarechnyy OM (2013) Plastic flows and phase transformations in materials under compression in diamond anvil cell: effect of contact sliding. J Appl Phys 114:043506CrossRef
29.
Zurück zum Zitat Feng B, Zarechnyy OM, Levitas VI (2013) Strain-induced phase transformations under compression, unloading, and reloading in a diamond anvil cell. J Appl Phys 113:173514CrossRef Feng B, Zarechnyy OM, Levitas VI (2013) Strain-induced phase transformations under compression, unloading, and reloading in a diamond anvil cell. J Appl Phys 113:173514CrossRef
30.
Zurück zum Zitat Feng B, Levitas VI (2013) Coupled phase transformations and plastic flows under torsion at high pressure in rotational diamond anvil cell: effect of contact sliding. J Appl Phys 114:213514CrossRef Feng B, Levitas VI (2013) Coupled phase transformations and plastic flows under torsion at high pressure in rotational diamond anvil cell: effect of contact sliding. J Appl Phys 114:213514CrossRef
31.
Zurück zum Zitat Feng B, Levitas VI, Zarechnyy OM (2014) Strain-induced phase transformations under high pressure and large shear in a rotational diamond anvil cell: simulation of loading, unloading, and reloading. Comput Mater Sci 84:404–416CrossRef Feng B, Levitas VI, Zarechnyy OM (2014) Strain-induced phase transformations under high pressure and large shear in a rotational diamond anvil cell: simulation of loading, unloading, and reloading. Comput Mater Sci 84:404–416CrossRef
32.
Zurück zum Zitat Feng B, Levitas VI, Ma Y (2014) Strain-induced phase transformation under compression in a diamond anvil cell: simulations of a sample and gasket. J Appl Phys 115:163509CrossRef Feng B, Levitas VI, Ma Y (2014) Strain-induced phase transformation under compression in a diamond anvil cell: simulations of a sample and gasket. J Appl Phys 115:163509CrossRef
33.
Zurück zum Zitat Feng B, Levitas VI (2016) Effects of the gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell. J Appl Phys 119:015902CrossRef Feng B, Levitas VI (2016) Effects of the gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell. J Appl Phys 119:015902CrossRef
34.
Zurück zum Zitat Feng B, Levitas VI (2017) Plastic flows and strain-induced alpha to omega phase transformation in zirconium during compression in a diamond anvil cell: finite element simulations. Mater Sci Eng A 680:130–140CrossRef Feng B, Levitas VI (2017) Plastic flows and strain-induced alpha to omega phase transformation in zirconium during compression in a diamond anvil cell: finite element simulations. Mater Sci Eng A 680:130–140CrossRef
35.
Zurück zum Zitat Levitas VI (1996) Large deformation of materials with complex rheological properties at normal and high pressure. Nova Science Publishers, New York Levitas VI (1996) Large deformation of materials with complex rheological properties at normal and high pressure. Nova Science Publishers, New York
36.
Zurück zum Zitat Feng B, Levitas VI, Hemley RJ (2016) Large elastoplasticity under static megabar pressures: formulation and application to compression of samples in diamond anvil cells. Int J Plast 84:33–57CrossRef Feng B, Levitas VI, Hemley RJ (2016) Large elastoplasticity under static megabar pressures: formulation and application to compression of samples in diamond anvil cells. Int J Plast 84:33–57CrossRef
37.
Zurück zum Zitat Hemley RJ, Mao HK, Shen GY, Badro J, Gillet P, Hanfland M, Hausermann D (1997) X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures. Science 276:1242–1245CrossRef Hemley RJ, Mao HK, Shen GY, Badro J, Gillet P, Hanfland M, Hausermann D (1997) X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures. Science 276:1242–1245CrossRef
38.
Zurück zum Zitat Feng B, Levitas VI (2017) Pressure self-focusing effect and novel methods for increasing the maximum pressure in traditional and rotational diamond anvil cells. Sci Reports 7:45461CrossRef Feng B, Levitas VI (2017) Pressure self-focusing effect and novel methods for increasing the maximum pressure in traditional and rotational diamond anvil cells. Sci Reports 7:45461CrossRef
39.
Zurück zum Zitat Feng B, Levitas VI (2017) Large elastoplastic deformation of a sample under compression and torsion in a rotational diamond anvil cell under megabar pressures. Int J Plast 92:79–95CrossRef Feng B, Levitas VI (2017) Large elastoplastic deformation of a sample under compression and torsion in a rotational diamond anvil cell under megabar pressures. Int J Plast 92:79–95CrossRef
40.
Zurück zum Zitat Feng B, Levitas VI (2017) Coupled elastoplasticity and strain-induced phase transformation under high pressure and large strains: formulation and application to BN sample compressed in a diamond anvil cell. Int J Plast 96:156–181CrossRef Feng B, Levitas VI (2017) Coupled elastoplasticity and strain-induced phase transformation under high pressure and large strains: formulation and application to BN sample compressed in a diamond anvil cell. Int J Plast 96:156–181CrossRef
Metadaten
Titel
Phase Transformations Under High Pressure and Large Plastic Deformations: Multiscale Theory and Interpretation of Experiments
verfasst von
Valery I. Levitas
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-76968-4_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.