Skip to main content
Erschienen in: Polymer Bulletin 4/2015

01.04.2015 | Original Paper

Phenol substituted polymethylsilane: a soluble conducting polymer with low cross-linking density

verfasst von: Wenjing Pu, Xiaodong Li, Gongyi Li, Tianjiao Hu

Erschienen in: Polymer Bulletin | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polymethylsilane (PMS) is made up of backbone of –Si–Si–, which is potentially a semi-conducting or conducting polymer after doping. Different phenolic groups are introduced into the main chain through Si–H substitution reaction. The polymer structures, optical properties and conducting performance are characterized. The aromatic modified PMS show a significant red-shift in UV absorption and fluorescent emission, higher oxidation resistance in the air and better film-forming properties. The conductivity values are about 10−6 S cm−1 and reach as high as 10−5 S cm−1 after I2-doping. At the same time, they also keep a good solubility in several organic solvents. The effect of functional groups in improving optical and conductive performance is studied, and the relationship between crosslink structure and oxidation resistance is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fujiki M, Koe JR, Terao K, Sato T, Teramoto A, Watanabe J (2003) Optically Active Polysilanes. Ten Years of Progress and New Polymer Twist for Nanoscience and Nanotechnology. Polym J 35:297–344CrossRef Fujiki M, Koe JR, Terao K, Sato T, Teramoto A, Watanabe J (2003) Optically Active Polysilanes. Ten Years of Progress and New Polymer Twist for Nanoscience and Nanotechnology. Polym J 35:297–344CrossRef
2.
Zurück zum Zitat Beach JV, Loy DA, Hsiao Y, Waymouth RM (1995) Environmentally friendly polysilane photoresists. In: ACS symposium series. Washington, DC, chap 23, pp 355–366 Beach JV, Loy DA, Hsiao Y, Waymouth RM (1995) Environmentally friendly polysilane photoresists. In: ACS symposium series. Washington, DC, chap 23, pp 355–366
3.
Zurück zum Zitat West R (2009) Polysilanes: Conformations, chromotropism and conductivity. John Wiley & Sons, Ltd., pp 1–23 West R (2009) Polysilanes: Conformations, chromotropism and conductivity. John Wiley & Sons, Ltd., pp 1–23
4.
Zurück zum Zitat Seki S, Tagawa S (2007) Optoelectronic Properties and Nanostructure Formation of -Conjugated Polymers. Polym J 39:277–293CrossRef Seki S, Tagawa S (2007) Optoelectronic Properties and Nanostructure Formation of -Conjugated Polymers. Polym J 39:277–293CrossRef
5.
Zurück zum Zitat Sacarescu L, Bockholt A, Siokou A, Simionescu M, Sacarescu G (2009) Structural and Optical Properties of Polyhydrosilanes. Macromol Chem Phys 210:2015–2021CrossRef Sacarescu L, Bockholt A, Siokou A, Simionescu M, Sacarescu G (2009) Structural and Optical Properties of Polyhydrosilanes. Macromol Chem Phys 210:2015–2021CrossRef
6.
Zurück zum Zitat Frackowiak E, Khomenko V, Jurewicz K, Lota K, Eguin FB (2006) Supercapacitors based on conducting polymers-nanotubes composites. J Power Sour 153:413–418CrossRef Frackowiak E, Khomenko V, Jurewicz K, Lota K, Eguin FB (2006) Supercapacitors based on conducting polymers-nanotubes composites. J Power Sour 153:413–418CrossRef
7.
Zurück zum Zitat Bréfort JL, Corriu RJP, Gerbier P, Guqrin C, Henner BJL, Jean A, Kuhlmann T (1992) New Poly[(sllylene)diacetylenes] and Poly[(germylene)dlacetylenes]: Synthesis and Conductive Properties. Organometallics 11:2500–2506CrossRef Bréfort JL, Corriu RJP, Gerbier P, Guqrin C, Henner BJL, Jean A, Kuhlmann T (1992) New Poly[(sllylene)diacetylenes] and Poly[(germylene)dlacetylenes]: Synthesis and Conductive Properties. Organometallics 11:2500–2506CrossRef
8.
Zurück zum Zitat Watanabe A (2003) Optical properties of polysilanes with various silicon skeletons. J Organomet Chem 685:122–133CrossRef Watanabe A (2003) Optical properties of polysilanes with various silicon skeletons. J Organomet Chem 685:122–133CrossRef
9.
Zurück zum Zitat Kobayashi T, Hatayama K, Suzuki S, Abe M, Watanabe H, Kijima M, Shirakawa H (1998) Preparation of substituted network polysilanes and their electrical conductivities. Organometallics 17:1646–1648CrossRef Kobayashi T, Hatayama K, Suzuki S, Abe M, Watanabe H, Kijima M, Shirakawa H (1998) Preparation of substituted network polysilanes and their electrical conductivities. Organometallics 17:1646–1648CrossRef
10.
Zurück zum Zitat Watanabe A, Tsutsumi Y, Matsuda M (1995) Effect of Si-skeleton dimensionality on optical and electrical properties of poly(methylphenylsilylene) and poly(phenylsilyne). Synth Met 74:191–196CrossRef Watanabe A, Tsutsumi Y, Matsuda M (1995) Effect of Si-skeleton dimensionality on optical and electrical properties of poly(methylphenylsilylene) and poly(phenylsilyne). Synth Met 74:191–196CrossRef
11.
Zurück zum Zitat Sacarescu L, Simionescu M, Sacarescu G (2011) Synthesis of Polyhydrosilanes-graft-poly(ethyleneglycol)methyl Ether. Int J Polym Anal Charact 16:360–368CrossRef Sacarescu L, Simionescu M, Sacarescu G (2011) Synthesis of Polyhydrosilanes-graft-poly(ethyleneglycol)methyl Ether. Int J Polym Anal Charact 16:360–368CrossRef
12.
Zurück zum Zitat Tang H, Li J, Qin J (2001) Synthesis of multifunctional polysilanes via Si–Cl containing. React Funct Polym 48:193–199CrossRef Tang H, Li J, Qin J (2001) Synthesis of multifunctional polysilanes via Si–Cl containing. React Funct Polym 48:193–199CrossRef
13.
Zurück zum Zitat Osakada K (2000) Structure and chemical properties of mononuclear and dinuclear silylrhodium complexes. Activation of the Si–C bond and formation of Si–Cl and Si–SR bonds promoted by Rh complexes. J Organomet Chem 611:323–331CrossRef Osakada K (2000) Structure and chemical properties of mononuclear and dinuclear silylrhodium complexes. Activation of the Si–C bond and formation of Si–Cl and Si–SR bonds promoted by Rh complexes. J Organomet Chem 611:323–331CrossRef
14.
Zurück zum Zitat Hirayama MKN, Caseri WR, Suter UW (1999) Strongly attached ultrathin polymer layers on metal surfaces obtained by activation of Si–H bonds. Appl Surf Sci 143:256–264CrossRef Hirayama MKN, Caseri WR, Suter UW (1999) Strongly attached ultrathin polymer layers on metal surfaces obtained by activation of Si–H bonds. Appl Surf Sci 143:256–264CrossRef
15.
Zurück zum Zitat Damewood JR, West R (1985) Structure calculations for silane polymers: polysilane and poly(dimethylsilylene). Macromolecules 18:159–164CrossRef Damewood JR, West R (1985) Structure calculations for silane polymers: polysilane and poly(dimethylsilylene). Macromolecules 18:159–164CrossRef
16.
Zurück zum Zitat Saxena A, Okoshi K, Fujiki M, Naito M, Guo G, Hagihara T, Ishikawa M (2004) Spectroscopic Evidence of Si–H End Groups in Dialkylpolysilanes Synthesized via Wurtz Coupling. Macromolecules 37:367–670CrossRef Saxena A, Okoshi K, Fujiki M, Naito M, Guo G, Hagihara T, Ishikawa M (2004) Spectroscopic Evidence of Si–H End Groups in Dialkylpolysilanes Synthesized via Wurtz Coupling. Macromolecules 37:367–670CrossRef
17.
Zurück zum Zitat Feigl A, Bockholt A, Weis J, Rieger B (2011) Modern Synthetic and Application Aspects of Polysilanes: An Underestimated Class of Materials? Adv Polym Sci 235:1–31CrossRef Feigl A, Bockholt A, Weis J, Rieger B (2011) Modern Synthetic and Application Aspects of Polysilanes: An Underestimated Class of Materials? Adv Polym Sci 235:1–31CrossRef
18.
Zurück zum Zitat Fukushima M, Noguchi N, Aramata M, Hamada Y, Tabei E, Mori S, Yamamoto Y (1998) Polysilanes as conducting material producers and their application to. Synth Met 97:273–280CrossRef Fukushima M, Noguchi N, Aramata M, Hamada Y, Tabei E, Mori S, Yamamoto Y (1998) Polysilanes as conducting material producers and their application to. Synth Met 97:273–280CrossRef
19.
Zurück zum Zitat Shieh Y, Hsu T, Sawan SP (1996) Conductivities of Polysilanes. J Appl Polym Sci 62:1723–1728CrossRef Shieh Y, Hsu T, Sawan SP (1996) Conductivities of Polysilanes. J Appl Polym Sci 62:1723–1728CrossRef
20.
Zurück zum Zitat Callender CL, Carere CA, Albert J, Zhou LL, Worsfold DJ (1992) Determination of third-order nonlinear optical susceptibilities of polysilane thin films. J Opt Soc Am B 9:518–523CrossRef Callender CL, Carere CA, Albert J, Zhou LL, Worsfold DJ (1992) Determination of third-order nonlinear optical susceptibilities of polysilane thin films. J Opt Soc Am B 9:518–523CrossRef
21.
Zurück zum Zitat Koe J (2009) Contemporary polysilane synthesis and functionalisation. Polym Int 58:255–260CrossRef Koe J (2009) Contemporary polysilane synthesis and functionalisation. Polym Int 58:255–260CrossRef
22.
Zurück zum Zitat Hayase S (2003) Polysilanes for semiconductor fabrication. Prog Polym Sci 28:359–381CrossRef Hayase S (2003) Polysilanes for semiconductor fabrication. Prog Polym Sci 28:359–381CrossRef
23.
Zurück zum Zitat Chojnowski J, Cypryk M, Kurjata J (2003) Organic polysilanes interrupted by heteroatoms. Prog Polym Sci 28:691–728CrossRef Chojnowski J, Cypryk M, Kurjata J (2003) Organic polysilanes interrupted by heteroatoms. Prog Polym Sci 28:691–728CrossRef
24.
Zurück zum Zitat Levitsky MM, Zavin BG, Chernyavskii AL, Erokhin VV (1999) A new way of introducing metal oxide fragments into polysilane chains. Russ Chem Bull 48:1789–1790CrossRef Levitsky MM, Zavin BG, Chernyavskii AL, Erokhin VV (1999) A new way of introducing metal oxide fragments into polysilane chains. Russ Chem Bull 48:1789–1790CrossRef
25.
Zurück zum Zitat Lee S (2009) A correlation between the optical and mechanical properties of novel polysilane/polysiloxane nanocomposites. Polym Bull 63:385–396CrossRef Lee S (2009) A correlation between the optical and mechanical properties of novel polysilane/polysiloxane nanocomposites. Polym Bull 63:385–396CrossRef
26.
Zurück zum Zitat Kamata N, Terunuma D, Ishii R, Satoh H, Aihara S, Yaoita Y, Tonsyo S (2003) Effcient energy transfer from polysilane molecules and its application to electroluminescence. J Organomet Chem 685:235–242CrossRef Kamata N, Terunuma D, Ishii R, Satoh H, Aihara S, Yaoita Y, Tonsyo S (2003) Effcient energy transfer from polysilane molecules and its application to electroluminescence. J Organomet Chem 685:235–242CrossRef
27.
Zurück zum Zitat Jones RG, Benfield RE, Swain AC, Webb SJ, Went MJ (1995) Chloromethylation of poly(methylphenylsilane). Polymer 36:393–398CrossRef Jones RG, Benfield RE, Swain AC, Webb SJ, Went MJ (1995) Chloromethylation of poly(methylphenylsilane). Polymer 36:393–398CrossRef
28.
Zurück zum Zitat Kashimura S, Tane Y, Ishifune M, Murai Y, Hashimoto S, Nakai T, Hirose R, Murase H (2008) Practical method for the synthesis of polysilanes using Mg and Lewis acid system. Tetrahedron Lett 49:269–271CrossRef Kashimura S, Tane Y, Ishifune M, Murai Y, Hashimoto S, Nakai T, Hirose R, Murase H (2008) Practical method for the synthesis of polysilanes using Mg and Lewis acid system. Tetrahedron Lett 49:269–271CrossRef
29.
Zurück zum Zitat Matsuura Y, Matsukawa K, Kawabata R, Higashi N, Niwa M, Inoue H (2002) Synthesis of polysilane-acrylamide copolymers by photopolymerization and their application to polysilane-silica hybrid thin films. Polymer 43:1549–1553CrossRef Matsuura Y, Matsukawa K, Kawabata R, Higashi N, Niwa M, Inoue H (2002) Synthesis of polysilane-acrylamide copolymers by photopolymerization and their application to polysilane-silica hybrid thin films. Polymer 43:1549–1553CrossRef
30.
Zurück zum Zitat Ohshita J, Yamashita A, Hiraoka T, Shinpo A, Kunai A (1997) Polymeric Organosilicon Systems. 27. Macromolecules 30:1540–1549CrossRef Ohshita J, Yamashita A, Hiraoka T, Shinpo A, Kunai A (1997) Polymeric Organosilicon Systems. 27. Macromolecules 30:1540–1549CrossRef
31.
Zurück zum Zitat Furukawa K, Ebata K, Nakashima H, Kashimura Y, Torimitsu K (2003) Polysilane Bearing “Sulfide Tripod” Terminus: Preparation and Selective Chemisorption on Gold Surface. Macromolecules 36:9–11CrossRef Furukawa K, Ebata K, Nakashima H, Kashimura Y, Torimitsu K (2003) Polysilane Bearing “Sulfide Tripod” Terminus: Preparation and Selective Chemisorption on Gold Surface. Macromolecules 36:9–11CrossRef
32.
Zurück zum Zitat Xing X, Liu L, Li XD, Wang HZ (2008) Synthesis and characterization of polysilanes with antimony side groups. J Natl Univ Def Technol 30:16–20 (Simplified Chinese) Xing X, Liu L, Li XD, Wang HZ (2008) Synthesis and characterization of polysilanes with antimony side groups. J Natl Univ Def Technol 30:16–20 (Simplified Chinese)
33.
Zurück zum Zitat Xing X, Li XD, Guo AQ, Cao F, Wang J (2004) Study on synthesis and end-blocking of polymethylsilane. Acta Polym Sin 5:705–708 (Simplified Chinese) Xing X, Li XD, Guo AQ, Cao F, Wang J (2004) Study on synthesis and end-blocking of polymethylsilane. Acta Polym Sin 5:705–708 (Simplified Chinese)
34.
Zurück zum Zitat Xing X, Guo AQ, Liu L, Li XD (2012) Synthesis and Electronical Property of Antimony-Substituted Polysilanes. Open Mater Sci J 6:28–33CrossRef Xing X, Guo AQ, Liu L, Li XD (2012) Synthesis and Electronical Property of Antimony-Substituted Polysilanes. Open Mater Sci J 6:28–33CrossRef
35.
Zurück zum Zitat West R, David LD, Djurovich PI, Stearley KL, Srinivasan KSV, Yu H (1981) Phenylmethylpolysilanes: Formable Silane Copolymers with Potential Semiconducting Properties. J Am Chem Soc 103:7352–7354CrossRef West R, David LD, Djurovich PI, Stearley KL, Srinivasan KSV, Yu H (1981) Phenylmethylpolysilanes: Formable Silane Copolymers with Potential Semiconducting Properties. J Am Chem Soc 103:7352–7354CrossRef
36.
Zurück zum Zitat Rushkin IL, Internante LV (1995) Alkoxy-Substituted Poly(silylenemethy1enes). A New Class of Alkoxy-Substituted Polymers. Macromolecules 28:5160–5161CrossRef Rushkin IL, Internante LV (1995) Alkoxy-Substituted Poly(silylenemethy1enes). A New Class of Alkoxy-Substituted Polymers. Macromolecules 28:5160–5161CrossRef
37.
Zurück zum Zitat Qiu H, Du Z (1989) Organosilane Polymers: Formable Polymers Containing Reactive Side Groups. J Polym Sci Polym Chem 27:2861–2869CrossRef Qiu H, Du Z (1989) Organosilane Polymers: Formable Polymers Containing Reactive Side Groups. J Polym Sci Polym Chem 27:2861–2869CrossRef
38.
Zurück zum Zitat Sãcãrescu G, Voiculescu N, Marcu M, Sãcãrescu L, Ardeleanu R, Simionescu M (1997) Polyhydrosilanes 1. Synthesis. J Macromol Sci Pure Appl Chem 34:509–516CrossRef Sãcãrescu G, Voiculescu N, Marcu M, Sãcãrescu L, Ardeleanu R, Simionescu M (1997) Polyhydrosilanes 1. Synthesis. J Macromol Sci Pure Appl Chem 34:509–516CrossRef
Metadaten
Titel
Phenol substituted polymethylsilane: a soluble conducting polymer with low cross-linking density
verfasst von
Wenjing Pu
Xiaodong Li
Gongyi Li
Tianjiao Hu
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 4/2015
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1304-9

Weitere Artikel der Ausgabe 4/2015

Polymer Bulletin 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.