Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2018

21.05.2018

Phenomenological Constitutive Modeling of High-Temperature Flow Behavior Incorporating Individual and Coupled Effects of Processing Parameters in Super-austenitic Stainless Steel

verfasst von: Swagata Roy, Srija Biswas, K. Arun Babu, Sumantra Mandal

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel constitutive model has been developed for predicting flow responses of super-austenitic stainless steel over a wide range of strains (0.05-0.6), temperatures (1173-1423 K) and strain rates (0.001-1 s−1). Further, the predictability of this new model has been compared with the existing Johnson–Cook (JC) and modified Zerilli–Armstrong (M-ZA) model. The JC model is not befitted for flow prediction as it is found to be exhibiting very high (~ 36%) average absolute error (δ) and low (~ 0.92) correlation coefficient (R). On the contrary, the M-ZA model has demonstrated relatively lower δ (~ 13%) and higher R (~ 0.96) for flow prediction. The incorporation of couplings of processing parameters in M-ZA model has led to exhibit better prediction than JC model. However, the flow analyses of the studied alloy have revealed the additional synergistic influences of strain and strain rate as well as strain, temperature, and strain rate apart from those considered in M-ZA model. Hence, the new phenomenological model has been formulated incorporating all the individual and synergistic effects of processing parameters and a ‘strain-shifting’ parameter. The proposed model predicted the flow behavior of the alloy with much better correlation and generalization than M-ZA model as substantiated by its lower δ (~ 7.9%) and higher R (~ 0.99) of prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Bahar, J. Frodigh, P. Kangas, and U. Kivisäkk, Super-Austenitic Stainless Steel, US Patents, 2006 B. Bahar, J. Frodigh, P. Kangas, and U. Kivisäkk, Super-Austenitic Stainless Steel, US Patents, 2006
2.
Zurück zum Zitat A. Mirzaei, Z.A. Hanzaki, M.H. Pishbin, A. Imandoust, and S. Khoddam, Evaluating the Hot Deformation Behavior of a Super-Austenitic Steel Through Microstructural and Neural Network Analysis, J. Mater. Eng. Perform., 2015, 24(6), p 2412–2421CrossRef A. Mirzaei, Z.A. Hanzaki, M.H. Pishbin, A. Imandoust, and S. Khoddam, Evaluating the Hot Deformation Behavior of a Super-Austenitic Steel Through Microstructural and Neural Network Analysis, J. Mater. Eng. Perform., 2015, 24(6), p 2412–2421CrossRef
3.
Zurück zum Zitat K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V.S. Sarma, Hot Deformation Characteristics and Processing Map of a Phosphorous Modified Super Austenitic Stainless Steel, Mater. Des., 2017, 115, p 262–275CrossRef K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V.S. Sarma, Hot Deformation Characteristics and Processing Map of a Phosphorous Modified Super Austenitic Stainless Steel, Mater. Des., 2017, 115, p 262–275CrossRef
6.
Zurück zum Zitat A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527(6), p 1605–1611CrossRef A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527(6), p 1605–1611CrossRef
7.
Zurück zum Zitat A. Mirzaei, Z.A. Hanzaki, N. Haghdadi, and A. Marandi, Constitutive Description of High Temperature Flow Behavior of Sanicro-28 Super-Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 589, p 76–82CrossRef A. Mirzaei, Z.A. Hanzaki, N. Haghdadi, and A. Marandi, Constitutive Description of High Temperature Flow Behavior of Sanicro-28 Super-Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 589, p 76–82CrossRef
8.
Zurück zum Zitat A. Momeni and K. Dehghani, Hot Working Behavior of 2205 Austenite-Ferrite Duplex Stainless Steel Characterized by Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2011, 528(3), p 1448–1454CrossRef A. Momeni and K. Dehghani, Hot Working Behavior of 2205 Austenite-Ferrite Duplex Stainless Steel Characterized by Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2011, 528(3), p 1448–1454CrossRef
9.
Zurück zum Zitat K.A. Babu, S. Mandal, A. Kumar, C.N. Athreya, B. de Boer, and V.S. Sarma, Characterization of Hot Deformation Behavior of Alloy 617 Through Kinetic Analysis, Dynamic Material Modeling and Microstructural Studies, Mater. Sci. Eng. A, 2016, 664, p 177–187CrossRef K.A. Babu, S. Mandal, A. Kumar, C.N. Athreya, B. de Boer, and V.S. Sarma, Characterization of Hot Deformation Behavior of Alloy 617 Through Kinetic Analysis, Dynamic Material Modeling and Microstructural Studies, Mater. Sci. Eng. A, 2016, 664, p 177–187CrossRef
11.
Zurück zum Zitat L. Xu, L. Chen, G. Chen, and M. Wang, Hot Deformation Behavior and Microstructure Analysis of 25Cr3Mo3NiNb Steel during Hot Compression Tests, Vacuum, 2018, 147, p 8–17CrossRef L. Xu, L. Chen, G. Chen, and M. Wang, Hot Deformation Behavior and Microstructure Analysis of 25Cr3Mo3NiNb Steel during Hot Compression Tests, Vacuum, 2018, 147, p 8–17CrossRef
12.
Zurück zum Zitat G.Z. Voyiadjis and F.H. Abed, Microstructural Based Models for Bcc and Fcc Metals with Temperature and Strain Rate Dependency, Mech. Mater., 2005, 37(2–3), p 355–378CrossRef G.Z. Voyiadjis and F.H. Abed, Microstructural Based Models for Bcc and Fcc Metals with Temperature and Strain Rate Dependency, Mech. Mater., 2005, 37(2–3), p 355–378CrossRef
13.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499(1–2), p 88–92CrossRef Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499(1–2), p 88–92CrossRef
16.
Zurück zum Zitat S. Kobayashi, S. Oh, and T. Altan, Forming and the Finite Element Method, Oxford University Press, Oxford, 1989 S. Kobayashi, S. Oh, and T. Altan, Forming and the Finite Element Method, Oxford University Press, Oxford, 1989
17.
Zurück zum Zitat A. Laasraoui and J.J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Trans. A, 1991, 22, p 1545–1558CrossRef A. Laasraoui and J.J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Trans. A, 1991, 22, p 1545–1558CrossRef
18.
19.
Zurück zum Zitat H. Mirzadeh, Constitutive Analysis of Mg-Al-Zn Magnesium Alloys during Hot Deformation, Mech. Mater., 2014, 77, p 80–85CrossRef H. Mirzadeh, Constitutive Analysis of Mg-Al-Zn Magnesium Alloys during Hot Deformation, Mech. Mater., 2014, 77, p 80–85CrossRef
20.
Zurück zum Zitat C. Zhang, L. Zhang, W. Shen, Q. Xu, and Y. Cui, The Processing Map and Microstructure Evolution of Ni-Cr-Mo-Based C276 Superalloy During Hot Compression, J. Alloys Compd., 2017, 728, p 1269–1278CrossRef C. Zhang, L. Zhang, W. Shen, Q. Xu, and Y. Cui, The Processing Map and Microstructure Evolution of Ni-Cr-Mo-Based C276 Superalloy During Hot Compression, J. Alloys Compd., 2017, 728, p 1269–1278CrossRef
21.
Zurück zum Zitat R.W. Armstrong and F.J. Zerilli, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef R.W. Armstrong and F.J. Zerilli, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef
22.
Zurück zum Zitat P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall., 1988, 36(1), p 81–93CrossRef P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall., 1988, 36(1), p 81–93CrossRef
23.
Zurück zum Zitat D.J. Bammann, M.L. Chiesa, and G.C. Johnson, Modeling Large Deformation and Failure in Manufacturing Process, Theoretical and Applied Mechanics, T. Tatsumi, E. Wannabe, and T.E. Kambe, Ed., Elsevier, Amsterdam, 1996, p 359–376 D.J. Bammann, M.L. Chiesa, and G.C. Johnson, Modeling Large Deformation and Failure in Manufacturing Process, Theoretical and Applied Mechanics, T. Tatsumi, E. Wannabe, and T.E. Kambe, Ed., Elsevier, Amsterdam, 1996, p 359–376
24.
Zurück zum Zitat A.S. Khan, Y.S. Suh, and R. Kazmi, Quasi-Static and Dynamic Loading Responses and Constitutive Modeling of Titanium Alloys, Int. J. Plast, 2004, 20(12), p 2233–2248CrossRef A.S. Khan, Y.S. Suh, and R. Kazmi, Quasi-Static and Dynamic Loading Responses and Constitutive Modeling of Titanium Alloys, Int. J. Plast, 2004, 20(12), p 2233–2248CrossRef
26.
Zurück zum Zitat N. Haghdadi, D. Martin, and P. Hodgson, Physically-Based Constitutive Modelling of Hot Deformation Behavior in a LDX 2101 Duplex Stainless Steel, Mater. Des., 2016, 106, p 420–427CrossRef N. Haghdadi, D. Martin, and P. Hodgson, Physically-Based Constitutive Modelling of Hot Deformation Behavior in a LDX 2101 Duplex Stainless Steel, Mater. Des., 2016, 106, p 420–427CrossRef
27.
Zurück zum Zitat Y.C. Lin, X.M. Chen, D.X. Wen, and M.S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83, p 282–289CrossRef Y.C. Lin, X.M. Chen, D.X. Wen, and M.S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83, p 282–289CrossRef
28.
Zurück zum Zitat X. Li, X. Li, H. Zhou, X. Zhou, F. Li, and Q. Liu, Simulation of Dynamic Recrystallization in AZ80 Magnesium Alloy Using Cellular Automaton, Comput. Mater. Sci., 2017, 140, p 95–104CrossRef X. Li, X. Li, H. Zhou, X. Zhou, F. Li, and Q. Liu, Simulation of Dynamic Recrystallization in AZ80 Magnesium Alloy Using Cellular Automaton, Comput. Mater. Sci., 2017, 140, p 95–104CrossRef
29.
Zurück zum Zitat G.R. Johnson and W.H. Cook, Proceedings of Seventh International Symposium on Ballistics, The Hague, the Netherlands, 1983, p 541–547 G.R. Johnson and W.H. Cook, Proceedings of Seventh International Symposium on Ballistics, The Hague, the Netherlands, 1983, p 541–547
30.
Zurück zum Zitat D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526(1–2), p 1–6CrossRef D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526(1–2), p 1–6CrossRef
31.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31(2), p 981–984CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31(2), p 981–984CrossRef
32.
Zurück zum Zitat B.A. Abbasi, Z.A. Hanzaki, M.H. Pishbin, and N. Haghdadi, A Comparative Study on the Capability of Johnson–Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg-6A1-1Zn Alloy, Mech. Mater., 2014, 71, p 52–61CrossRef B.A. Abbasi, Z.A. Hanzaki, M.H. Pishbin, and N. Haghdadi, A Comparative Study on the Capability of Johnson–Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg-6A1-1Zn Alloy, Mech. Mater., 2014, 71, p 52–61CrossRef
33.
Zurück zum Zitat H. Mirzadeh, Constitutive Modeling and Prediction of Hot Deformation Flow Stress Under Dynamic Recrystallization Conditions, Mech. Mater., 2015, 85, p 66–79CrossRef H. Mirzadeh, Constitutive Modeling and Prediction of Hot Deformation Flow Stress Under Dynamic Recrystallization Conditions, Mech. Mater., 2015, 85, p 66–79CrossRef
35.
Zurück zum Zitat H.K. Farahani, M. Ketabchi, and S. Zangeneh, Determination of Johnson–Cook Plasticity Model Parameters for Inconel718, J. Mater. Eng. Perform., 2017, 26(11), p 5284–5293CrossRef H.K. Farahani, M. Ketabchi, and S. Zangeneh, Determination of Johnson–Cook Plasticity Model Parameters for Inconel718, J. Mater. Eng. Perform., 2017, 26(11), p 5284–5293CrossRef
36.
Zurück zum Zitat Z. Huang, L. Gao, Y. Wang, and F. Wang, Determination of the Johnson–Cook Constitutive Model Parameters of Materials by Cluster Global Optimization Algorithm, J. Mater. Eng. Perform., 2016, 25(9), p 4099–4107CrossRef Z. Huang, L. Gao, Y. Wang, and F. Wang, Determination of the Johnson–Cook Constitutive Model Parameters of Materials by Cluster Global Optimization Algorithm, J. Mater. Eng. Perform., 2016, 25(9), p 4099–4107CrossRef
37.
Zurück zum Zitat J. Cai, Y. Lei, K. Wang, X. Zhang, C. Miao, and W. Li, A Comparative Investigation on the Capability of Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Describe Flow Behavior of BFe10-1-2 Cupronickel Alloy at Elevated Temperature, J. Mater. Eng. Perform., 2016, 25(5), p 1952–1963CrossRef J. Cai, Y. Lei, K. Wang, X. Zhang, C. Miao, and W. Li, A Comparative Investigation on the Capability of Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Describe Flow Behavior of BFe10-1-2 Cupronickel Alloy at Elevated Temperature, J. Mater. Eng. Perform., 2016, 25(5), p 1952–1963CrossRef
38.
Zurück zum Zitat X. Shang, A. He, Y. Wang, X. Yang, H. Zhang, and X. Wang, Flow Behavior Modeling of a Nitrogen-Alloyed Ultralow Carbon Stainless Steel During Hot Deformation: A Comparative Study of Constitutive Models, J. Mater. Eng. Perform., 2015, 24(10), p 4106–4118CrossRef X. Shang, A. He, Y. Wang, X. Yang, H. Zhang, and X. Wang, Flow Behavior Modeling of a Nitrogen-Alloyed Ultralow Carbon Stainless Steel During Hot Deformation: A Comparative Study of Constitutive Models, J. Mater. Eng. Perform., 2015, 24(10), p 4106–4118CrossRef
39.
Zurück zum Zitat J. Cai, K. Wang, P. Zhai, F. Li, and J. Yang, A Modified Johnson–Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2015, 24(1), p 32–44CrossRef J. Cai, K. Wang, P. Zhai, F. Li, and J. Yang, A Modified Johnson–Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2015, 24(1), p 32–44CrossRef
40.
Zurück zum Zitat Z. Qingdong, C. Qiang, and Z. Xiaofeng, A Modified Johnson–Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures, J. Mater. Eng. Perform., 2014, 23(12), p 4336–4341CrossRef Z. Qingdong, C. Qiang, and Z. Xiaofeng, A Modified Johnson–Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures, J. Mater. Eng. Perform., 2014, 23(12), p 4336–4341CrossRef
41.
Zurück zum Zitat S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of Stainless Steel Type AISI, 304L During Hot Torsion, Appl. Soft Comput. J., 2009, 9(1), p 237–244CrossRef S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of Stainless Steel Type AISI, 304L During Hot Torsion, Appl. Soft Comput. J., 2009, 9(1), p 237–244CrossRef
42.
Zurück zum Zitat K.A. Babu and S. Mandal, Regression Based Novel Constitutive Analyses to Predict High Temperature Flow Behavior in Super Austenitic Stainless Steel, Mater. Sci. Eng. A, 2017, 703, p 187–195CrossRef K.A. Babu and S. Mandal, Regression Based Novel Constitutive Analyses to Predict High Temperature Flow Behavior in Super Austenitic Stainless Steel, Mater. Sci. Eng. A, 2017, 703, p 187–195CrossRef
43.
Zurück zum Zitat J. Zhao, H. Ding, W. Zhao, M. Huang, D. Wei, and Z. Jiang, Modelling of the Hot Deformation Behaviour of a Titanium Alloy Using Constitutive Equations and Artificial Neural Network, Comput. Mater. Sci., 2014, 92, p 47–56CrossRef J. Zhao, H. Ding, W. Zhao, M. Huang, D. Wei, and Z. Jiang, Modelling of the Hot Deformation Behaviour of a Titanium Alloy Using Constitutive Equations and Artificial Neural Network, Comput. Mater. Sci., 2014, 92, p 47–56CrossRef
44.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRef
45.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Combined Johnson–Cook and Zerilli–Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633CrossRef Y.C. Lin and X.M. Chen, A Combined Johnson–Cook and Zerilli–Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633CrossRef
48.
Zurück zum Zitat A.M. Lennon and K.T. Ramesh, The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures, Int. J. Plast, 2004, 20(2), p 269–290CrossRef A.M. Lennon and K.T. Ramesh, The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures, Int. J. Plast, 2004, 20(2), p 269–290CrossRef
49.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47(2), p 568–576CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47(2), p 568–576CrossRef
51.
Zurück zum Zitat J. Li, F. Li, J. Cai, R. Wang, Z. Yuan, and G. Ji, Comparative Investigation on the Modified Zerilli–Armstrong Model and Arrhenius-Type Model to Predict the Elevated-Temperature Flow Behaviour of 7050 Aluminium Alloy, Comput. Mater. Sci., 2013, 71, p 56–65CrossRef J. Li, F. Li, J. Cai, R. Wang, Z. Yuan, and G. Ji, Comparative Investigation on the Modified Zerilli–Armstrong Model and Arrhenius-Type Model to Predict the Elevated-Temperature Flow Behaviour of 7050 Aluminium Alloy, Comput. Mater. Sci., 2013, 71, p 56–65CrossRef
52.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802CrossRef
53.
Zurück zum Zitat D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall., 1996, 14, p 1479–1484CrossRef D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall., 1996, 14, p 1479–1484CrossRef
54.
Zurück zum Zitat J. Humphreys, G.S. Rohrer, and A. Rollett, Chapter 13: Hot Deformation and Dynamic Restoration, Recrystallization and Related Annealing Phenomena, 3rd ed., J. Humphreys, G.S. Rohrer, and A. Rollett, Ed., Elsevier, Oxford, 2017, p 469–508CrossRef J. Humphreys, G.S. Rohrer, and A. Rollett, Chapter 13: Hot Deformation and Dynamic Restoration, Recrystallization and Related Annealing Phenomena, 3rd ed., J. Humphreys, G.S. Rohrer, and A. Rollett, Ed., Elsevier, Oxford, 2017, p 469–508CrossRef
55.
Zurück zum Zitat E.X. Pu, H. Feng, M. Liu, W.J. Zheng, H. Dong, and Z.G. Song, Constitutive Modeling for Flow Behaviors of Superaustenitic Stainless Steel S32654 During Hot Deformation, J. Iron Steel Res. Int., 2016, 23(2), p 178–184CrossRef E.X. Pu, H. Feng, M. Liu, W.J. Zheng, H. Dong, and Z.G. Song, Constitutive Modeling for Flow Behaviors of Superaustenitic Stainless Steel S32654 During Hot Deformation, J. Iron Steel Res. Int., 2016, 23(2), p 178–184CrossRef
56.
Zurück zum Zitat H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1(1), p 1–18CrossRef H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1(1), p 1–18CrossRef
Metadaten
Titel
Phenomenological Constitutive Modeling of High-Temperature Flow Behavior Incorporating Individual and Coupled Effects of Processing Parameters in Super-austenitic Stainless Steel
verfasst von
Swagata Roy
Srija Biswas
K. Arun Babu
Sumantra Mandal
Publikationsdatum
21.05.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3416-5

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Engineering and Performance 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.