Skip to main content

2020 | OriginalPaper | Buchkapitel

28. Phonon Properties

Phonon and Free Charge Carrier Properties in Monoclinic-Symmetry -GaO

verfasst von : Mathias Schubert, Alyssa Mock, Rafał Korlacki, Sean Knight, Bo Monemar, Ken Goto, Yoshinao Kumagai, Akito Kuramata, Zbigniew Galazka, Günther Wagner, Marko J. Tadjer, Virginia D. Wheeler, Masataka Higashiwaki, Vanya Darakchieva

Erschienen in: Gallium Oxide

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present and discuss the complete set of infrared-active phonon modes in monoclinic-symmetry crystal modification gallium oxide (gallia, \(\upbeta \)-Ga\(_2\)O\(_3\)). The phonon mode set is obtained from a comprehensive analysis of generalized spectroscopic ellipsometry data in the farinfrared and infrared spectral regions investigating various n-type electrically conductive single crystal samples with different free electron volume density parameters cut under different orientations. The analysis of the ellipsometry data is performed using an eigendielectric displacement vector summation (EDVS) approach. In this approach, the effect of the free charge carriers onto the lattice modes of intrinsic \(\upbeta \)-Ga\(_2\)O\(_3\) are removed by calculation. Density functional theory calculations are performed in the general gradient approximation and all phonon modes at the Brillouin-center and their displacement direction dependencies are obtained. Transverse and longitudinal optical phonon mode parameters polarized within the monoclinic plane as well as perpendicular to the monoclinic plane agree excellently between experiment and theory. We also present and discuss the directional limiting frequency parameters within the monoclinic plane, the shape and anisotropy of the reststrahlen band, and the order of the phonon modes in semiconductors with polar phonon modes and monoclinic crystal structure. We further present and discuss the effect of coupling of longitudinal optical phonons with free charge carriers, leading to longitudinal-phonon-plasmon coupled modes. We reveal that the coupled modes, which affect electric and thermal transport, change amplitude, frequency, and direction within the monoclinic plane as a function of free electron concentration. Finally, we show optical Hall effect measurements, and provide experimentally determined effective electron mass parameters in \(\upbeta \)-Ga\(_2\)O\(_3\) for moderately-doped n-type samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In such a presentation, the tensor elements are over determined, meaning, an unambiguous set of dyadics cannot be obtained from knowledge of tensor \(\upvarepsilon _{\infty }\).
 
2
We note a misprint in [1] where the square on the amplitude parameter in (28.10) was erroneously omitted.
 
3
In materials with higher symmetries, for example, in a hexagonal lattice, multiple modes may have the same frequency. In a hexagonal lattice, there may be one TO mode frequency observed experimentally, but actually 3 different TO modes with equal amplitude parameters but polarized in different directions exist, where each direction is \(\frac{\pi }{3}\) rotated from its neighboring mode within the hexagonal plane. Then there are also exactly 3 corresponding LO modes with the same frequency. See also Schubert [35].
 
4
The TO-LO rule is observed from the fact that in materials with symmetries higher than monoclinic and triclinic, along major, orthogonal polarization directions, with ascending frequency, all frequencies of TO and LO modes polarized parallel to such major direction fall into pairs TO-LO, TO-LO, etc., where every TO mode is succeeded directly by one LO mode.
 
5
In materials with orthorhombic and higher crystal symmetries, the coupling leads to so-called coupled LO-phonon-plasmon (LPP) modes, which shift upward in frequency as a function of increased carrier density. All LPP modes maintain the same polarization direction as their originating LO modes. All polarization directions coincide with high-symmetry directions of the crystal. All LPP modes common to one set of polarization are bound by associated TO modes, except for the LPP mode with the highest frequency, which approaches infinity when the plasma density approaches infinity. See, e.g., [4749].
 
Literatur
1.
Zurück zum Zitat M. Schubert, R. Korlacki, S. Knight, T. Hofmann, S. Schöche, V. Darakchieva, E. Janzén, B. Monemar, D. Gogova, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, K. Goto, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Phys. Rev. B 93, 125209 (2016)CrossRef M. Schubert, R. Korlacki, S. Knight, T. Hofmann, S. Schöche, V. Darakchieva, E. Janzén, B. Monemar, D. Gogova, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, K. Goto, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Phys. Rev. B 93, 125209 (2016)CrossRef
2.
Zurück zum Zitat M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Phys. Stat. Sol. (A) 211, 2126 (2014) M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Phys. Stat. Sol. (A) 211, 2126 (2014)
3.
Zurück zum Zitat M. Higashiwaki, G.H. Jessen, Appl. Phys. Lett. 112, 060401 (2018) M. Higashiwaki, G.H. Jessen, Appl. Phys. Lett. 112, 060401 (2018)
5.
Zurück zum Zitat C. Sturm, R. Schmidt-Grund, C. Kranert, J. Furthmüller, F. Bechstedt, M. Grundmann, Phys. Rev. B 94, 035148 (2016)CrossRef C. Sturm, R. Schmidt-Grund, C. Kranert, J. Furthmüller, F. Bechstedt, M. Grundmann, Phys. Rev. B 94, 035148 (2016)CrossRef
6.
Zurück zum Zitat S. Knight, A. Mock, R. Korlacki, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, M. Schubert, Appl. Phys. Lett. 112, 012103 (2018) S. Knight, A. Mock, R. Korlacki, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, M. Schubert, Appl. Phys. Lett. 112, 012103 (2018)
8.
Zurück zum Zitat A. Parisini, K. Ghosh, U. Singisetti, R. Fornari, Sem. Sci. Tech. 33, 105008 (2018)CrossRef A. Parisini, K. Ghosh, U. Singisetti, R. Fornari, Sem. Sci. Tech. 33, 105008 (2018)CrossRef
9.
10.
Zurück zum Zitat Y. Kang, K. Krishnaswamy, H. Peelaers, C.G.V. de Walle, J. Phys.: Cond. Matt. 29, 234001 (2017) Y. Kang, K. Krishnaswamy, H. Peelaers, C.G.V. de Walle, J. Phys.: Cond. Matt. 29, 234001 (2017)
12.
13.
Zurück zum Zitat K. Ghosh, U. Singisetti, Low-Field and High-Field Transport in\(\beta \)-Ga\(_2\)O\(_3\) (Elsevier, 2019) K. Ghosh, U. Singisetti, Low-Field and High-Field Transport in\(\beta \)-Ga\(_2\)O\(_3\) (Elsevier, 2019)
15.
Zurück zum Zitat S. Baroni, S. de Gironcoli, A.D. Corso, S. Baroni, S. de Gironcoli, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)CrossRef S. Baroni, S. de Gironcoli, A.D. Corso, S. Baroni, S. de Gironcoli, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)CrossRef
16.
Zurück zum Zitat G. Venkataraman, L.A. Feldkamp, V.C. Sahni, Dynamics of Perfect Crystals (The MIT Press, Cambridge, MA, 1975) G. Venkataraman, L.A. Feldkamp, V.C. Sahni, Dynamics of Perfect Crystals (The MIT Press, Cambridge, MA, 1975)
17.
Zurück zum Zitat M. Schubert, A. Mock, R. Korlacki, V. Darakchieva, Phys. Rev. B 99, 041201(R) (2019)CrossRef M. Schubert, A. Mock, R. Korlacki, V. Darakchieva, Phys. Rev. B 99, 041201(R) (2019)CrossRef
18.
Zurück zum Zitat M. Schubert, T.E. Tiwald, C.M. Herzinger, Phys. Rev. B 61(12), 8187 (2000)CrossRef M. Schubert, T.E. Tiwald, C.M. Herzinger, Phys. Rev. B 61(12), 8187 (2000)CrossRef
19.
Zurück zum Zitat S. Schöche, T. Hofmann, R. Korlacki, T.E. Tiwald, M. Schubert, J. Appl. Phys. 113, 111906 (2013) S. Schöche, T. Hofmann, R. Korlacki, T.E. Tiwald, M. Schubert, J. Appl. Phys. 113, 111906 (2013)
20.
Zurück zum Zitat M. Dressel, B. Gompf, D. Faltermeier, A.K. Tripathi, J. Pflaum, M. Schubert, Opt. Exp. 16, 19770 (2008)CrossRef M. Dressel, B. Gompf, D. Faltermeier, A.K. Tripathi, J. Pflaum, M. Schubert, Opt. Exp. 16, 19770 (2008)CrossRef
21.
Zurück zum Zitat M. Schubert, C. Bundesmann, G. Jakopic, H. Arwin, Appl. Phys. Lett. 84, 200 (2004)CrossRef M. Schubert, C. Bundesmann, G. Jakopic, H. Arwin, Appl. Phys. Lett. 84, 200 (2004)CrossRef
22.
Zurück zum Zitat N. Ashkenov, B.N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, E.M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, J. Appl. Phys. 93, 126 (2003) N. Ashkenov, B.N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, E.M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, J. Appl. Phys. 93, 126 (2003)
23.
Zurück zum Zitat A. Kasic, M. Schubert, S. Einfeldt, D. Hommel, T.E. Tiwald, Phys. Rev. B 62(11), 7365 (2000)CrossRef A. Kasic, M. Schubert, S. Einfeldt, D. Hommel, T.E. Tiwald, Phys. Rev. B 62(11), 7365 (2000)CrossRef
24.
Zurück zum Zitat A. Kasic, M. Schubert, Y. Saito, Y. Nanishi, G. Wagner, Phys. Rev. B 65(11), 115206 (2002)CrossRef A. Kasic, M. Schubert, Y. Saito, Y. Nanishi, G. Wagner, Phys. Rev. B 65(11), 115206 (2002)CrossRef
25.
Zurück zum Zitat V. Darakchieva, P.P. Paskov, E. Valcheva, T. Paskova, B. Monemar, M. Schubert, H. Lu, W.J. Schaff, Appl. Phys. Lett. 84, 3636 (2004) V. Darakchieva, P.P. Paskov, E. Valcheva, T. Paskova, B. Monemar, M. Schubert, H. Lu, W.J. Schaff, Appl. Phys. Lett. 84, 3636 (2004)
26.
Zurück zum Zitat V. Darakchieva, J. Birch, M. Schubert, T. Paskova, S. Tungasmita, G. Wagner, A. Kasic, B. Monemar, Phys. Rev. B 70, 045411 (2004) V. Darakchieva, J. Birch, M. Schubert, T. Paskova, S. Tungasmita, G. Wagner, A. Kasic, B. Monemar, Phys. Rev. B 70, 045411 (2004)
27.
Zurück zum Zitat V. Darakchieva, E. Valcheva, P.P. Paskov, M. Schubert, T. Paskova, B. Monemar, H. Amano, I. Akasaki, Phys. Rev. B 71, 115329 (2005)CrossRef V. Darakchieva, E. Valcheva, P.P. Paskov, M. Schubert, T. Paskova, B. Monemar, H. Amano, I. Akasaki, Phys. Rev. B 71, 115329 (2005)CrossRef
28.
Zurück zum Zitat V. Darakchieva, T. Paskova, M. Schubert, H. Arwin, P. Paskov, B. Monemar, D. Hommel, M. Heuken, J. Off, F. Scholz, B. Haskell, P. Fini, J. Speck, S. Nakamura, Phys. Rev. B 75, 195217 (2007) V. Darakchieva, T. Paskova, M. Schubert, H. Arwin, P. Paskov, B. Monemar, D. Hommel, M. Heuken, J. Off, F. Scholz, B. Haskell, P. Fini, J. Speck, S. Nakamura, Phys. Rev. B 75, 195217 (2007)
29.
Zurück zum Zitat V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, Y. Takagi, Y. Nanishi, Appl. Phys. Lett. 95, 202103 (2009)CrossRef V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, Y. Takagi, Y. Nanishi, Appl. Phys. Lett. 95, 202103 (2009)CrossRef
30.
Zurück zum Zitat V. Darakchieva, T. Hofmann, M. Schubert, B.E. Sernelius, B. Monemar, P.O.A. Persson, F. Giuliani, E. Alves, H. Lu, W.J. Schaff, Appl. Phys. Lett. 94, 022109 (2009) V. Darakchieva, T. Hofmann, M. Schubert, B.E. Sernelius, B. Monemar, P.O.A. Persson, F. Giuliani, E. Alves, H. Lu, W.J. Schaff, Appl. Phys. Lett. 94, 022109 (2009)
31.
Zurück zum Zitat V. Darakchieva, K. Lorenz, N. Barradas, E. Alves, B. Monemar, M. Schubert, N. Franco, C. Hsiao, L. Chen, W. Schaff, L. Tu, T. Yamaguchi, Y. Nanishi, Appl. Phys. Lett. 96, 081907 (2010) V. Darakchieva, K. Lorenz, N. Barradas, E. Alves, B. Monemar, M. Schubert, N. Franco, C. Hsiao, L. Chen, W. Schaff, L. Tu, T. Yamaguchi, Y. Nanishi, Appl. Phys. Lett. 96, 081907 (2010)
32.
Zurück zum Zitat M.Y. Xie, M. Schubert, J. Lu, P.O.A. Persson, V. Stanishev, C.L. Hsiao, L.C. Chen, W.J. Schaff, V. Darakchieva, Phys. Rev. B 90, 195306 (2014)CrossRef M.Y. Xie, M. Schubert, J. Lu, P.O.A. Persson, V. Stanishev, C.L. Hsiao, L.C. Chen, W.J. Schaff, V. Darakchieva, Phys. Rev. B 90, 195306 (2014)CrossRef
33.
Zurück zum Zitat M.Y. Xie, N.B. Sedrine, S. Schöche, T. Hofmann, M. Schubert, L. Hong, B. Monemar, X. Wang, A. Yoshikawa, K. Wang, T. Araki, Y. Nanishi, V. Darakchieva, J. Appl. Phys. 115, 163504 (2014) M.Y. Xie, N.B. Sedrine, S. Schöche, T. Hofmann, M. Schubert, L. Hong, B. Monemar, X. Wang, A. Yoshikawa, K. Wang, T. Araki, Y. Nanishi, V. Darakchieva, J. Appl. Phys. 115, 163504 (2014)
34.
Zurück zum Zitat G.E. Jellison, M.A. McGuire, L.A. Boatner, J.D. Budai, E.D. Specht, D.J. Singh, Phys. Rev. B 84, 195439 (2011)CrossRef G.E. Jellison, M.A. McGuire, L.A. Boatner, J.D. Budai, E.D. Specht, D.J. Singh, Phys. Rev. B 84, 195439 (2011)CrossRef
36.
Zurück zum Zitat A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, M. Schubert, Phys. Rev. B 96, 245205 (2017) A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, M. Schubert, Phys. Rev. B 96, 245205 (2017)
37.
Zurück zum Zitat C. Sturm, J. Furthmüller, F. Bechstedt, R. Schmidt-Grund, M. Grundmann, APL Mater. 3(10), 106106 (2015)CrossRef C. Sturm, J. Furthmüller, F. Bechstedt, R. Schmidt-Grund, M. Grundmann, APL Mater. 3(10), 106106 (2015)CrossRef
38.
Zurück zum Zitat C. Sturm, R. Schmidt-Grund, V. Zviagin, M. Grundmann, Appl. Phys. Lett. 111(8), 082102 (2017)CrossRef C. Sturm, R. Schmidt-Grund, V. Zviagin, M. Grundmann, Appl. Phys. Lett. 111(8), 082102 (2017)CrossRef
39.
Zurück zum Zitat M. Schubert, T. Hofmann, C.M. Herzinger, W. Dollase, Thin Solid Films 455–456, 619 (2004)CrossRef M. Schubert, T. Hofmann, C.M. Herzinger, W. Dollase, Thin Solid Films 455–456, 619 (2004)CrossRef
40.
Zurück zum Zitat A. Mock, R. Korlacki, S. Knight, M. Stokey, A. Fritz, V. Darakchieva, M. Schubert, Phys. Rev. B (2019) A. Mock, R. Korlacki, S. Knight, M. Stokey, A. Fritz, V. Darakchieva, M. Schubert, Phys. Rev. B (2019)
41.
Zurück zum Zitat A. Mock, R. Korlacki, S. Knight, M. Schubert, Phys. Rev. B 95, 165202 (2017)CrossRef A. Mock, R. Korlacki, S. Knight, M. Schubert, Phys. Rev. B 95, 165202 (2017)CrossRef
42.
Zurück zum Zitat A. Mock, R. Korlacki, S. Knight, M. Schubert, Phys. Rev. B 97, 165203 (2018)CrossRef A. Mock, R. Korlacki, S. Knight, M. Schubert, Phys. Rev. B 97, 165203 (2018)CrossRef
43.
44.
45.
Zurück zum Zitat A.B. Kuzmenko, E.A. Tishchenko, V.G. Orlov, J. Phys.: Condens. Matter 8, 6199 (1996) A.B. Kuzmenko, E.A. Tishchenko, V.G. Orlov, J. Phys.: Condens. Matter 8, 6199 (1996)
46.
Zurück zum Zitat M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954) M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954)
47.
Zurück zum Zitat P. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)CrossRef P. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)CrossRef
48.
Zurück zum Zitat C. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995) C. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995)
49.
Zurück zum Zitat C. Kittel, Introduction To Solid State Physics (Wiley India Pvt. Ltd., 2009) C. Kittel, Introduction To Solid State Physics (Wiley India Pvt. Ltd., 2009)
50.
Zurück zum Zitat M. Schubert, R. Korlacki, A. Mock, Y. Kumagai, K. Goto, A. Kuramata, Z. Galazka, G. Wagner, V. Darakchieva, Appl. Phys. Lett. 114, 102102 (2019)CrossRef M. Schubert, R. Korlacki, A. Mock, Y. Kumagai, K. Goto, A. Kuramata, Z. Galazka, G. Wagner, V. Darakchieva, Appl. Phys. Lett. 114, 102102 (2019)CrossRef
51.
Zurück zum Zitat M. Schubert, P. Kuehne, V. Darakchieva, T. Hofmann, J. Opt. Soc. Am. A 33, 1553 (2016)CrossRef M. Schubert, P. Kuehne, V. Darakchieva, T. Hofmann, J. Opt. Soc. Am. A 33, 1553 (2016)CrossRef
52.
Zurück zum Zitat P. Weiser, M. Stavola, W.B. Fowler, Y. Qin, S. Pearton, Appl. Phys. Lett. 112(23), 232104 (2018)CrossRef P. Weiser, M. Stavola, W.B. Fowler, Y. Qin, S. Pearton, Appl. Phys. Lett. 112(23), 232104 (2018)CrossRef
53.
Zurück zum Zitat Y. Qin, M. Stavola, W.B. Fowler, P. Weiser, S.J. Pearton, ECS, J. Sol. Stat. Sci. Tech. 8, Q3103 (2019) Y. Qin, M. Stavola, W.B. Fowler, P. Weiser, S.J. Pearton, ECS, J. Sol. Stat. Sci. Tech. 8, Q3103 (2019)
54.
Zurück zum Zitat Z. Galazka, S. Ganschow, A. Fiedler, R. Bertram, D. Klimm, K. Irmscher, R. Schewski, M. Pietsch, M. Albrecht, M. Bickermann, J. Cryst. Growth 486, 82 (2018)CrossRef Z. Galazka, S. Ganschow, A. Fiedler, R. Bertram, D. Klimm, K. Irmscher, R. Schewski, M. Pietsch, M. Albrecht, M. Bickermann, J. Cryst. Growth 486, 82 (2018)CrossRef
55.
Zurück zum Zitat S.H. Han, A. Mauze, E. Ahmadi, T. Mates, Y. Oshima, J.S. Speck, Semicond. Sci. Technol. 33(4), 045001 (2018)CrossRef S.H. Han, A. Mauze, E. Ahmadi, T. Mates, Y. Oshima, J.S. Speck, Semicond. Sci. Technol. 33(4), 045001 (2018)CrossRef
56.
Zurück zum Zitat M.N. Fireman, G. L’Heureux, F. Wu, T. Mates, E.C. Young, J.S. Speck, J. Cryst. Growth 508, 19 (2019)CrossRef M.N. Fireman, G. L’Heureux, F. Wu, T. Mates, E.C. Young, J.S. Speck, J. Cryst. Growth 508, 19 (2019)CrossRef
57.
Zurück zum Zitat A.T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J.S. Speck, K.T. Stevens, J.D. Blevins, D.B. Thomson, N. Moser, K.D. Chabak, G.H. Jessen, Appl. Phys. Lett. 113(6), 062101 (2018)CrossRef A.T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J.S. Speck, K.T. Stevens, J.D. Blevins, D.B. Thomson, N. Moser, K.D. Chabak, G.H. Jessen, Appl. Phys. Lett. 113(6), 062101 (2018)CrossRef
58.
Zurück zum Zitat H. Peelaers, J.L. Lyons, J.B. Varley, C.G. Van de Walle, APL Mat. 7(2), 022519 (2019)CrossRef H. Peelaers, J.L. Lyons, J.B. Varley, C.G. Van de Walle, APL Mat. 7(2), 022519 (2019)CrossRef
Metadaten
Titel
Phonon Properties
verfasst von
Mathias Schubert
Alyssa Mock
Rafał Korlacki
Sean Knight
Bo Monemar
Ken Goto
Yoshinao Kumagai
Akito Kuramata
Zbigniew Galazka
Günther Wagner
Marko J. Tadjer
Virginia D. Wheeler
Masataka Higashiwaki
Vanya Darakchieva
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-37153-1_28

Neuer Inhalt