Skip to main content

2011 | OriginalPaper | Buchkapitel

Photoacoustic and Thermoacoustic Tomography: Image Formation Principles

verfasst von : Kun Wang, Mark A. Anastasio

Erschienen in: Handbook of Mathematical Methods in Imaging

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Photoacoustic tomography (PAT), also known as thermoacoustic or optoacoustic tomography, is a rapidly emerging imaging technique that holds great promise for biomedical imaging. PAT is a hybrid imaging technique, and can be viewed either as an ultrasound mediated electromagnetic modality or an ultrasound modality that exploits electromagnetic-enhanced image contrast. In this chapter, we provide a review of the underlying imaging physics and contrast mechanisms in PAT. Additionally, the imaging models that relate the measured photoacoustic wavefields to the sought-after optical absorption distribution are described in their continuous and discrete forms. The basic principles of image reconstruction from discrete measurement data are presented, which includes a review of methods for modeling the measurement system response.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anastasio MA, Zhang J, Modgil D, La Riviere PJ (2007) Application of inverse source concepts to photoacoustic tomography. Inverse Prob 23(6):S21–S35MATHCrossRef Anastasio MA, Zhang J, Modgil D, La Riviere PJ (2007) Application of inverse source concepts to photoacoustic tomography. Inverse Prob 23(6):S21–S35MATHCrossRef
2.
Zurück zum Zitat Anastasio MA, Zhang J, Sidky EY, Zou Y, Xia D, Pan X (2005) Feasibility of half-data image reconstruction in 3D reflectivity tomography with a spherical aperture. IEEE Trans Med Imaging 24:1100–1112CrossRef Anastasio MA, Zhang J, Sidky EY, Zou Y, Xia D, Pan X (2005) Feasibility of half-data image reconstruction in 3D reflectivity tomography with a spherical aperture. IEEE Trans Med Imaging 24:1100–1112CrossRef
3.
Zurück zum Zitat Anastasio MA, Zhang J, Pan X (2005) Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneities. In: SPIE, vol 5750. SPIE, pp 298–304 Anastasio MA, Zhang J, Pan X (2005) Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneities. In: SPIE, vol 5750. SPIE, pp 298–304
4.
Zurück zum Zitat Anastasio MA, Zhang J (2006) Image reconstruction in photoacoustic tomography with truncated cylindrical measurement apertures. In: Proceedings of the SPIE conference, vol 6086. p 36 Anastasio MA, Zhang J (2006) Image reconstruction in photoacoustic tomography with truncated cylindrical measurement apertures. In: Proceedings of the SPIE conference, vol 6086. p 36
5.
Zurück zum Zitat Anastasio MA, Zhang J, Pan X (2005) Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneties. In: Proceedings of the SPIE medical imaging conference, vol 5750. pp 298–304 Anastasio MA, Zhang J, Pan X (2005) Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneties. In: Proceedings of the SPIE medical imaging conference, vol 5750. pp 298–304
6.
Zurück zum Zitat Anastasio MA, Zhang J, Pan X, Zou Y, Keng G, Wang LV (2005) Half-time image reconstruction in thermoacoustic tomography. IEEE Trans Med Imaging 24:199–210CrossRef Anastasio MA, Zhang J, Pan X, Zou Y, Keng G, Wang LV (2005) Half-time image reconstruction in thermoacoustic tomography. IEEE Trans Med Imaging 24:199–210CrossRef
7.
Zurück zum Zitat Anastasio MA, Zou Y, Pan X (2002) Reflectivity tomography using temporally truncated data. In: IEEE EMBS/BMES conference proceedings, vol 2. IEEE, pp 921–922 Anastasio MA, Zou Y, Pan X (2002) Reflectivity tomography using temporally truncated data. In: IEEE EMBS/BMES conference proceedings, vol 2. IEEE, pp 921–922
8.
Zurück zum Zitat Axelsson O (1994) Iterative solution methods. Cambridge University Press, CambridgeMATH Axelsson O (1994) Iterative solution methods. Cambridge University Press, CambridgeMATH
9.
Zurück zum Zitat Barrett H, Myers K (2004) Foundations of image science. Wiley series in pure and applied optics. Wiley, Hoboken Barrett H, Myers K (2004) Foundations of image science. Wiley series in pure and applied optics. Wiley, Hoboken
10.
Zurück zum Zitat Beard PC, Laufer JG, Cox B, Arridge SR (2009) Quantitative photoacoustic imaging: measurement of absolute chromophore concentrations for physiological and molecular imaging. In: Wang LV (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton Beard PC, Laufer JG, Cox B, Arridge SR (2009) Quantitative photoacoustic imaging: measurement of absolute chromophore concentrations for physiological and molecular imaging. In: Wang LV (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton
11.
Zurück zum Zitat Bertero M, Boccacci P (1998) Inverse problems in imaging. Institute of Physics Publishing, BristolMATHCrossRef Bertero M, Boccacci P (1998) Inverse problems in imaging. Institute of Physics Publishing, BristolMATHCrossRef
12.
Zurück zum Zitat Cheong W, Prahl S, Welch A (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185CrossRef Cheong W, Prahl S, Welch A (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185CrossRef
13.
Zurück zum Zitat Cox BT, Arridge SR, Kstli KP, Beard PC (2006) Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. Appl Opt 45:1866–1875CrossRef Cox BT, Arridge SR, Kstli KP, Beard PC (2006) Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. Appl Opt 45:1866–1875CrossRef
14.
Zurück zum Zitat Devaney AJ (1979) The inverse problem for random sources. J Math Phys 20:1687–1691CrossRef Devaney AJ (1979) The inverse problem for random sources. J Math Phys 20:1687–1691CrossRef
15.
Zurück zum Zitat Devaney AJ (1983) Inverse source and scattering problems in ultrasonics. IEEE T Son Ultrason 30:355–364CrossRef Devaney AJ (1983) Inverse source and scattering problems in ultrasonics. IEEE T Son Ultrason 30:355–364CrossRef
16.
Zurück zum Zitat Diebold GJ (2009) Photoacoustic monopole radiation: waves from objects with symmetry in one, two, and three dimension. In: Wang LV (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton Diebold GJ (2009) Photoacoustic monopole radiation: waves from objects with symmetry in one, two, and three dimension. In: Wang LV (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton
17.
Zurück zum Zitat Diebold GJ, Sun T, Khan MI (Dec 1991) Photoacoustic monopole radiation in one, two, and three dimensions. Phys Rev Lett 67(24):3384–3387CrossRef Diebold GJ, Sun T, Khan MI (Dec 1991) Photoacoustic monopole radiation in one, two, and three dimensions. Phys Rev Lett 67(24):3384–3387CrossRef
18.
Zurück zum Zitat Diebold GJ, Westervelt PJ (1988) The photoacoustic effect generated by a spherical droplet in a fluid. J Acoust Soc Am 84(6):2245–2251CrossRef Diebold GJ, Westervelt PJ (1988) The photoacoustic effect generated by a spherical droplet in a fluid. J Acoust Soc Am 84(6):2245–2251CrossRef
19.
Zurück zum Zitat Ephrat P, Keenliside L, Seabrook A, Prato FS, Carson JJL (2008) Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction. J Biomed Opt 13(5): 054052CrossRef Ephrat P, Keenliside L, Seabrook A, Prato FS, Carson JJL (2008) Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction. J Biomed Opt 13(5): 054052CrossRef
20.
Zurück zum Zitat Esenaliev RO, Karabutov AA, Oraevsky AA (1999) Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J Sel Top Quantum Electron 5:981–988CrossRef Esenaliev RO, Karabutov AA, Oraevsky AA (1999) Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J Sel Top Quantum Electron 5:981–988CrossRef
21.
Zurück zum Zitat Fessler JA (1994) Penalized weighted least-squares reconstruction for positron emission tomography. IEEE Trans Med Imaging 13:290–300CrossRef Fessler JA (1994) Penalized weighted least-squares reconstruction for positron emission tomography. IEEE Trans Med Imaging 13:290–300CrossRef
22.
Zurück zum Zitat Fessler JA, Booth SD (1999) Conjugate-gradient preconditioning methods for shiftvariant PET image reconstruction. IEEE Trans Image Process 8(5):688–699MathSciNetMATHCrossRef Fessler JA, Booth SD (1999) Conjugate-gradient preconditioning methods for shiftvariant PET image reconstruction. IEEE Trans Image Process 8(5):688–699MathSciNetMATHCrossRef
23.
Zurück zum Zitat Finch D, Haltmeier M, Rakesh (2007) Inversion of spherical means and the wave equation in even dimensions. SIAM J Appl Math 68(2): 392–412 Finch D, Haltmeier M, Rakesh (2007) Inversion of spherical means and the wave equation in even dimensions. SIAM J Appl Math 68(2): 392–412
24.
Zurück zum Zitat Finch D, Patch S, Rakesh (2004) Determining a function from its mean values over a family of spheres. SIAM J Math Anal 35:1213–1240 Finch D, Patch S, Rakesh (2004) Determining a function from its mean values over a family of spheres. SIAM J Math Anal 35:1213–1240
25.
Zurück zum Zitat Haltmeier M, Scherzer O, Burgholzer P, Paltauf G (2004) Thermoacoustic computed tomography with large planar receivers. Inverse Prob 20(5):1663–1673MathSciNetMATHCrossRef Haltmeier M, Scherzer O, Burgholzer P, Paltauf G (2004) Thermoacoustic computed tomography with large planar receivers. Inverse Prob 20(5):1663–1673MathSciNetMATHCrossRef
26.
Zurück zum Zitat Jin X, Wang LV (2006) Thermoacoustic tomography with correction for acoustic speed variations. Phys Med Biol 51(24):6437–6448CrossRef Jin X, Wang LV (2006) Thermoacoustic tomography with correction for acoustic speed variations. Phys Med Biol 51(24):6437–6448CrossRef
27.
Zurück zum Zitat Joines W, Jirtle R, Rafal M, Schaeffer D (1980) Microwave power absorption differences between normal and malignant tissue. Radiat Oncol Biol Phys 6:681–687CrossRef Joines W, Jirtle R, Rafal M, Schaeffer D (1980) Microwave power absorption differences between normal and malignant tissue. Radiat Oncol Biol Phys 6:681–687CrossRef
28.
Zurück zum Zitat Khokhlova TD, Pelivanov IM, Kozhushko VV, Zharinov AN, Solomatin VS, Karabutov AA (2007) Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics. Appl Opt 46(2):262–272CrossRef Khokhlova TD, Pelivanov IM, Kozhushko VV, Zharinov AN, Solomatin VS, Karabutov AA (2007) Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics. Appl Opt 46(2):262–272CrossRef
29.
Zurück zum Zitat Köstli KP, Beard PC (2003) Two-dimensional photoacoustic imaging by use of fouriertransform image reconstruction and a detector with an anisotropic response. Appl Opt 42(10): 1899–1908CrossRef Köstli KP, Beard PC (2003) Two-dimensional photoacoustic imaging by use of fouriertransform image reconstruction and a detector with an anisotropic response. Appl Opt 42(10): 1899–1908CrossRef
30.
Zurück zum Zitat Köstli KP, Frenz M, Bebie H, Weber HP (2001) Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys Med Biol 46(7):1863–1872CrossRef Köstli KP, Frenz M, Bebie H, Weber HP (2001) Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys Med Biol 46(7):1863–1872CrossRef
31.
Zurück zum Zitat Kruger R, Reinecke D, Kruger G (1999) Thermoacoustic computed tomography-technical considerations. Med Phys 26:1832–1837CrossRef Kruger R, Reinecke D, Kruger G (1999) Thermoacoustic computed tomography-technical considerations. Med Phys 26:1832–1837CrossRef
32.
Zurück zum Zitat Kruger RA, Kiser WL, Reinecke DR, Kruger GA, Miller KD (2003) Thermoacoustic optical molecular imaging of small animals. Mol Imaging 2:113–123CrossRef Kruger RA, Kiser WL, Reinecke DR, Kruger GA, Miller KD (2003) Thermoacoustic optical molecular imaging of small animals. Mol Imaging 2:113–123CrossRef
33.
Zurück zum Zitat Kruger RA, Liu P, Fang R, Appledorn C (1995) Photoacoustic ultrasound (PAUS) reconstruction tomography. Med Phys 22:1605–1609CrossRef Kruger RA, Liu P, Fang R, Appledorn C (1995) Photoacoustic ultrasound (PAUS) reconstruction tomography. Med Phys 22:1605–1609CrossRef
34.
Zurück zum Zitat Ku G, Fornage BD, Jin X, Xu M, Hunt KK, Wang LV (2005) Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol Cancer Res Treat 4:559–566 Ku G, Fornage BD, Jin X, Xu M, Hunt KK, Wang LV (2005) Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol Cancer Res Treat 4:559–566
36.
37.
Zurück zum Zitat Langenberg KJ (1987) Basic methods of tomography and inverse problems. Adam Hilger, PhiladelphiaMATH Langenberg KJ (1987) Basic methods of tomography and inverse problems. Adam Hilger, PhiladelphiaMATH
38.
Zurück zum Zitat Lewitt RM (1992) Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys Med Biol 37(3):705–716CrossRef Lewitt RM (1992) Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys Med Biol 37(3):705–716CrossRef
39.
Zurück zum Zitat Li C, Pramanik M, Ku G, Wang LV (2008) Image distortion in thermoacoustic tomography caused by microwave diffraction. Phys Rev E Stat Nonlinear Soft Matter Phys 77(3):031923CrossRef Li C, Pramanik M, Ku G, Wang LV (2008) Image distortion in thermoacoustic tomography caused by microwave diffraction. Phys Rev E Stat Nonlinear Soft Matter Phys 77(3):031923CrossRef
40.
Zurück zum Zitat Li C, Wang LV (2009) Photoacoustic tomography and sensing in biomedicine. Phys Med Biol 54(19):R59–R97CrossRef Li C, Wang LV (2009) Photoacoustic tomography and sensing in biomedicine. Phys Med Biol 54(19):R59–R97CrossRef
41.
Zurück zum Zitat Maslov K, Wang LV (2008) Photoacoustic imaging of biological tissue with intensitymodulated continuous-wave laser. J Biomeded Opt 13(2):024006CrossRef Maslov K, Wang LV (2008) Photoacoustic imaging of biological tissue with intensitymodulated continuous-wave laser. J Biomeded Opt 13(2):024006CrossRef
42.
Zurück zum Zitat Wernick MN, Aarsvold JN (2004) Emission tomography, the fundamentals of PET and SPECT. Elsevier, San Diego Wernick MN, Aarsvold JN (2004) Emission tomography, the fundamentals of PET and SPECT. Elsevier, San Diego
43.
Zurück zum Zitat Modgil D, Anastasio MA, Wang K, LaRivière PJ(2009) Image reconstruction in photoacoustic tomography with variable speed of sound using a higher order geometrical acoustics approximation. In: SPIE, vol 7177. p 71771A Modgil D, Anastasio MA, Wang K, LaRivière PJ(2009) Image reconstruction in photoacoustic tomography with variable speed of sound using a higher order geometrical acoustics approximation. In: SPIE, vol 7177. p 71771A
44.
Zurück zum Zitat Norton S, Linzer M (1981) Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans Biomed Eng 28: 202–220CrossRef Norton S, Linzer M (1981) Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans Biomed Eng 28: 202–220CrossRef
45.
Zurück zum Zitat Oraevsky AA, Jacques SL, Tittel FK (1997) Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl Opt 36:402–415CrossRef Oraevsky AA, Jacques SL, Tittel FK (1997) Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl Opt 36:402–415CrossRef
46.
Zurück zum Zitat Oraevsky AA, Karabutov AA (2000) Ultimate sensitivity of time-resolved optoacoustic detection. In: SPIE, vol 3916. pp 228–239CrossRef Oraevsky AA, Karabutov AA (2000) Ultimate sensitivity of time-resolved optoacoustic detection. In: SPIE, vol 3916. pp 228–239CrossRef
47.
Zurück zum Zitat Oraevsky AA, Karabutov AA (2003) Optoacoustic tomography. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton Oraevsky AA, Karabutov AA (2003) Optoacoustic tomography. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton
48.
Zurück zum Zitat Paltauf G, Nuster R, Burgholzer P (2009) Characterization of integrating ultrasound detectors for photoacoustic tomography. J Appl Phys 105(10):102026CrossRef Paltauf G, Nuster R, Burgholzer P (2009) Characterization of integrating ultrasound detectors for photoacoustic tomography. J Appl Phys 105(10):102026CrossRef
49.
Zurück zum Zitat Paltauf G, Schmidt-Kloiber H, Guss H (1996) Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves. Appl Phys Lett 69(11): 1526–1528CrossRef Paltauf G, Schmidt-Kloiber H, Guss H (1996) Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves. Appl Phys Lett 69(11): 1526–1528CrossRef
50.
Zurück zum Zitat Paltauf G, Viator J, Prahl S, Jacques S (2002) Iterative reconstruction algorithm for optoacoustic imaging. J Acoust Soc Am 112:1536–1544CrossRef Paltauf G, Viator J, Prahl S, Jacques S (2002) Iterative reconstruction algorithm for optoacoustic imaging. J Acoust Soc Am 112:1536–1544CrossRef
51.
Zurück zum Zitat Pan X, Zou Y, Anastasio MA (2003) Data redundany and reduced-scan reconstruction in reflectivity tomography. IEEE Trans Image Process 12:784–795CrossRef Pan X, Zou Y, Anastasio MA (2003) Data redundany and reduced-scan reconstruction in reflectivity tomography. IEEE Trans Image Process 12:784–795CrossRef
52.
Zurück zum Zitat Patch SK (2004) Thermoacoustic tomography—consistency conditions and the partial scan problem. Phys Med Biol 49(11):2305–2315CrossRef Patch SK (2004) Thermoacoustic tomography—consistency conditions and the partial scan problem. Phys Med Biol 49(11):2305–2315CrossRef
53.
Zurück zum Zitat Provost J, Lesage F (2009) The application of compressed sensing for photo-acoustic tomography. IEEE Trans Med Imaging 28:585–594CrossRef Provost J, Lesage F (2009) The application of compressed sensing for photo-acoustic tomography. IEEE Trans Med Imaging 28:585–594CrossRef
54.
Zurück zum Zitat La Riviere PJ, Zhang J, Anastasio MA (2006) Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt Lett 31:781–783CrossRef La Riviere PJ, Zhang J, Anastasio MA (2006) Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt Lett 31:781–783CrossRef
55.
Zurück zum Zitat Sushilov NV, Cobbold SC (Apr 2004) Frequency-domain wave equation and its timedomain solutions in attenuating media. J Acoust Soc Am 115(4):1431–1436CrossRef Sushilov NV, Cobbold SC (Apr 2004) Frequency-domain wave equation and its timedomain solutions in attenuating media. J Acoust Soc Am 115(4):1431–1436CrossRef
56.
Zurück zum Zitat Tam AC (1986) Application of photo-acoustic sensing techniques. Rev Mod Phys 58:381–431CrossRef Tam AC (1986) Application of photo-acoustic sensing techniques. Rev Mod Phys 58:381–431CrossRef
57.
Zurück zum Zitat Wang LV (ed) (2009) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton Wang LV (ed) (2009) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton
58.
Zurück zum Zitat Wang LV, Wu H-I (2007) Biomedical optics, principles and imaging. Wiley, Hoboken Wang LV, Wu H-I (2007) Biomedical optics, principles and imaging. Wiley, Hoboken
59.
Zurück zum Zitat Wang LV, Zhao XM, Sun HT, Ku G (1999) Microwave-induced acoustic imaging of biological tissues. Rev Sci Instrum 70:3744–3748CrossRef Wang LV, Zhao XM, Sun HT, Ku G (1999) Microwave-induced acoustic imaging of biological tissues. Rev Sci Instrum 70:3744–3748CrossRef
60.
Zurück zum Zitat Wang X, Xie X, Ku G, Wang LV, Stoica G (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Opt 11(2):024015CrossRef Wang X, Xie X, Ku G, Wang LV, Stoica G (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Opt 11(2):024015CrossRef
61.
Zurück zum Zitat Wang Y, Xie X, Wang X, Ku G, Gill KL, ONeal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4:1689–1692 Wang Y, Xie X, Wang X, Ku G, Gill KL, ONeal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4:1689–1692
62.
Zurück zum Zitat Xu M, Wang LV (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans Med Imaging 21:814–822CrossRef Xu M, Wang LV (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans Med Imaging 21:814–822CrossRef
63.
Zurück zum Zitat Xu M, Wang LV (2003) Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys Rev E 67: 056605CrossRef Xu M, Wang LV (2003) Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys Rev E 67: 056605CrossRef
64.
Zurück zum Zitat Xu M, Wang L (2005) Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E 71:016706CrossRef Xu M, Wang L (2005) Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E 71:016706CrossRef
65.
Zurück zum Zitat Xu M, Wang LV (2006) Biomedical photoacoustics. Rev Sci Instrum 77:041101CrossRef Xu M, Wang LV (2006) Biomedical photoacoustics. Rev Sci Instrum 77:041101CrossRef
66.
Zurück zum Zitat Xu Y, Feng D, Wang LV (2002) Exact frequency-domain reconstruction for thermoacoustic tomography i: planar geometry. IEEE Trans Med Imaging 21:823–828CrossRef Xu Y, Feng D, Wang LV (2002) Exact frequency-domain reconstruction for thermoacoustic tomography i: planar geometry. IEEE Trans Med Imaging 21:823–828CrossRef
67.
Zurück zum Zitat Xu Y, Wang LV (2003) Effects of acoustic heterogeneity in breast thermoacoustic tomography. IEEE Trans Ultrason Ferroelectr Freq Control 50:1134–1146CrossRef Xu Y, Wang LV (2003) Effects of acoustic heterogeneity in breast thermoacoustic tomography. IEEE Trans Ultrason Ferroelectr Freq Control 50:1134–1146CrossRef
68.
Zurück zum Zitat Xu Y, Xu M, Wang LV (2002) Exact frequency-domain reconstruction for thermoacoustic tomography-ii: cylindrical geometry. IEEE Trans Med Imaging 21:829–833CrossRef Xu Y, Xu M, Wang LV (2002) Exact frequency-domain reconstruction for thermoacoustic tomography-ii: cylindrical geometry. IEEE Trans Med Imaging 21:829–833CrossRef
69.
Zurück zum Zitat Yuan Z, Jiang H (2006) Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media. Appl Phys Lett 88(23):231101CrossRef Yuan Z, Jiang H (2006) Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media. Appl Phys Lett 88(23):231101CrossRef
70.
Zurück zum Zitat Zhang J, Anastasio MA, Pan X, Wang LV (2005) Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography. IEEE Trans Med Imaging 24:817–820CrossRef Zhang J, Anastasio MA, Pan X, Wang LV (2005) Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography. IEEE Trans Med Imaging 24:817–820CrossRef
71.
Zurück zum Zitat Zou Y, Pan X, Anastasio MA (2002) Data truncation and the exterior reconstruction problem in reflection-mode tomography. In: IEEE nuclear science symposium conference record, vol 2. IEEE, pp 726–730 Zou Y, Pan X, Anastasio MA (2002) Data truncation and the exterior reconstruction problem in reflection-mode tomography. In: IEEE nuclear science symposium conference record, vol 2. IEEE, pp 726–730
Metadaten
Titel
Photoacoustic and Thermoacoustic Tomography: Image Formation Principles
verfasst von
Kun Wang
Mark A. Anastasio
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-0-387-92920-0_18