Skip to main content

2018 | OriginalPaper | Buchkapitel

11. Photoacoustic Imaging Tools for Nanomedicine

verfasst von : Jeesu Kim, Chulhong Kim

Erschienen in: Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Photoacoustic imaging is a biomedical imaging method that has grown explosively over the last decades. Functional molecular and morphological information of biological molecules, cells, tissues, and organs can be obtained through photoacoustic images. In addition to endogenous light absorbing chromophores, various exogenous contrast agents have been developed to obtain molecular photoacoustic images. Thus, this technology has been soon popular in nanomedicine. This chapter introduces various types of photoacoustic imaging systems and recent trends in photoacoustic image-guided nanomedicine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Balas C (2009) Review of biomedical optical imaging – a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Meas Sci Technol 20(10):104020CrossRef Balas C (2009) Review of biomedical optical imaging – a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Meas Sci Technol 20(10):104020CrossRef
2.
Zurück zum Zitat Kim C, Favazza C, Wang LV (2010) In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev 110(5):2756–2782CrossRef Kim C, Favazza C, Wang LV (2010) In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev 110(5):2756–2782CrossRef
4.
Zurück zum Zitat Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462CrossRef Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462CrossRef
5.
Zurück zum Zitat Kim J, Park S, Lee C, Kim JY, Kim C (2015) Organic nanostructures for photoacoustic imaging. ChemNanoMat 2:156CrossRef Kim J, Park S, Lee C, Kim JY, Kim C (2015) Organic nanostructures for photoacoustic imaging. ChemNanoMat 2:156CrossRef
6.
Zurück zum Zitat Yao J, Maslov KI, Shi Y, Taber LA, Wang LV (2010) Vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt Lett 35(9):1419–1421CrossRef Yao J, Maslov KI, Shi Y, Taber LA, Wang LV (2010) Vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt Lett 35(9):1419–1421CrossRef
7.
Zurück zum Zitat Pramanik M, Wang LV (2009) Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt 14(5):054024–054027CrossRef Pramanik M, Wang LV (2009) Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt 14(5):054024–054027CrossRef
8.
Zurück zum Zitat Lee C, Jeon M, Jeon MY, Kim J, Kim C (2014) In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source. Appl Opt 53(18):3884–3889CrossRef Lee C, Jeon M, Jeon MY, Kim J, Kim C (2014) In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source. Appl Opt 53(18):3884–3889CrossRef
9.
Zurück zum Zitat Kim C, Erpelding TN, Jankovic L, Wang LV (2011) Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philos Trans R Soc A Math Phys Eng Sci 369(1955):4644–4650CrossRef Kim C, Erpelding TN, Jankovic L, Wang LV (2011) Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philos Trans R Soc A Math Phys Eng Sci 369(1955):4644–4650CrossRef
10.
Zurück zum Zitat Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LV (2010) Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed Opt Express 1(1):278–284CrossRef Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LV (2010) Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed Opt Express 1(1):278–284CrossRef
11.
Zurück zum Zitat Kim J, Park S, Jung Y, Chang S, Park J, Zhang Y, Lovell JF, Kim C (2016) Programmable real-time clinical photoacoustic and ultrasound imaging system. Sci Rep 6:35137CrossRef Kim J, Park S, Jung Y, Chang S, Park J, Zhang Y, Lovell JF, Kim C (2016) Programmable real-time clinical photoacoustic and ultrasound imaging system. Sci Rep 6:35137CrossRef
12.
Zurück zum Zitat Heijblom M, Steenbergen W, Manohar S (2015) Clinical photoacoustic breast imaging: the Twente experience. IEEE Pulse 6(3):42–46CrossRef Heijblom M, Steenbergen W, Manohar S (2015) Clinical photoacoustic breast imaging: the Twente experience. IEEE Pulse 6(3):42–46CrossRef
13.
Zurück zum Zitat Fakhrejahani E, Torii M, Kitai T, Kanao S, Asao Y, Hashizume Y, Mikami Y, Yamaga I, Kataoka M, Sugie T (2015) Clinical report on the first prototype of a photoacoustic tomography system with dual illumination for breast cancer imaging. PLoS One 10(10):e0139113CrossRef Fakhrejahani E, Torii M, Kitai T, Kanao S, Asao Y, Hashizume Y, Mikami Y, Yamaga I, Kataoka M, Sugie T (2015) Clinical report on the first prototype of a photoacoustic tomography system with dual illumination for breast cancer imaging. PLoS One 10(10):e0139113CrossRef
14.
Zurück zum Zitat Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4(11):710CrossRef Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4(11):710CrossRef
15.
Zurück zum Zitat Kim C, Song KH, Gao F, Wang LV (2010) Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats – volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging 1. Radiology 255(2):442–450CrossRef Kim C, Song KH, Gao F, Wang LV (2010) Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats – volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging 1. Radiology 255(2):442–450CrossRef
16.
Zurück zum Zitat Wang X, Ku G, Wegiel MA, Bornhop DJ, Stoica G, Wang LV (2004) Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt Lett 29(7):730–732CrossRef Wang X, Ku G, Wegiel MA, Bornhop DJ, Stoica G, Wang LV (2004) Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt Lett 29(7):730–732CrossRef
17.
Zurück zum Zitat Ku G, Wang LV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30(5):507–509CrossRef Ku G, Wang LV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30(5):507–509CrossRef
18.
Zurück zum Zitat Kim C, Cho EC, Chen J, Song KH, Au L, Favazza C, Zhang Q, Cobley CM, Gao F, Xia Y (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4(8):4559–4564CrossRef Kim C, Cho EC, Chen J, Song KH, Au L, Favazza C, Zhang Q, Cobley CM, Gao F, Xia Y (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4(8):4559–4564CrossRef
19.
Zurück zum Zitat Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, Pandey RK (2014) Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 4(2):163–174CrossRef Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, Pandey RK (2014) Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 4(2):163–174CrossRef
20.
Zurück zum Zitat Li W, Cai X, Kim C, Sun G, Zhang Y, Deng R, Yang M, Chen J, Achilefu S, Wang LV (2011) Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale 3(4):1724–1730CrossRef Li W, Cai X, Kim C, Sun G, Zhang Y, Deng R, Yang M, Chen J, Achilefu S, Wang LV (2011) Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale 3(4):1724–1730CrossRef
21.
Zurück zum Zitat Jeon M, Jenkins S, Oh J, Kim J, Peterson T, Chen J, Kim C (2014) Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine 9(9):1377–1388CrossRef Jeon M, Jenkins S, Oh J, Kim J, Peterson T, Chen J, Kim C (2014) Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine 9(9):1377–1388CrossRef
22.
Zurück zum Zitat De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma T-J, Oralkan O (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562CrossRef De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma T-J, Oralkan O (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562CrossRef
23.
Zurück zum Zitat Shashkov EV, Everts M, Galanzha EI, Zharov VP (2008) Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett 8(11):3953–3958CrossRef Shashkov EV, Everts M, Galanzha EI, Zharov VP (2008) Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett 8(11):3953–3958CrossRef
24.
Zurück zum Zitat Zerda Adl, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172CrossRef Zerda Adl, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172CrossRef
25.
Zurück zum Zitat Maslov K, Stoica G, Wang LV (2005) In vivo dark-field reflection-mode photoacoustic microscopy. Opt Lett 30(6):625–627CrossRef Maslov K, Stoica G, Wang LV (2005) In vivo dark-field reflection-mode photoacoustic microscopy. Opt Lett 30(6):625–627CrossRef
27.
Zurück zum Zitat Hu S, Maslov K, Wang LV (2011) Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett 36(7):1134–1136CrossRef Hu S, Maslov K, Wang LV (2011) Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett 36(7):1134–1136CrossRef
28.
Zurück zum Zitat Maslov K, Zhang HF, Hu S, Wang LV (2008) Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett 33:929CrossRef Maslov K, Zhang HF, Hu S, Wang LV (2008) Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett 33:929CrossRef
29.
Zurück zum Zitat Li C, Aguirre A, Gamelin J, Maurudis A, Zhu Q, Wang LV (2010) Real-time photoacoustic tomography of cortical hemodynamics in small animals. J Biomed Opt 15(1):010509CrossRef Li C, Aguirre A, Gamelin J, Maurudis A, Zhu Q, Wang LV (2010) Real-time photoacoustic tomography of cortical hemodynamics in small animals. J Biomed Opt 15(1):010509CrossRef
30.
Zurück zum Zitat Brecht H-P, Su R, Fronheiser M, Ermilov SA, Conjusteau A, Oraevsky AA (2009) Whole-body three-dimensional optoacoustic tomography system for small animals. J Biomed Opt 14(6):064007–064008CrossRef Brecht H-P, Su R, Fronheiser M, Ermilov SA, Conjusteau A, Oraevsky AA (2009) Whole-body three-dimensional optoacoustic tomography system for small animals. J Biomed Opt 14(6):064007–064008CrossRef
31.
Zurück zum Zitat Xia J, Chatni MR, Maslov K, Guo Z, Wang K, Anastasio M, Wang LV (2012) Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J Biomed Opt 17(5):0505061–0505063CrossRef Xia J, Chatni MR, Maslov K, Guo Z, Wang K, Anastasio M, Wang LV (2012) Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J Biomed Opt 17(5):0505061–0505063CrossRef
32.
Zurück zum Zitat Luís Deán-Ben X, Razansky D (2014) Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light: Sci Appl 3(1):e137CrossRef Luís Deán-Ben X, Razansky D (2014) Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light: Sci Appl 3(1):e137CrossRef
33.
Zurück zum Zitat Razansky D, Buehler A, Ntziachristos V (2011) Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc 6(8):1121–1129CrossRef Razansky D, Buehler A, Ntziachristos V (2011) Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc 6(8):1121–1129CrossRef
34.
Zurück zum Zitat Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP (2010) Photoacoustic angiography of the breast. Med Phys 37(11):6096–6100CrossRef Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP (2010) Photoacoustic angiography of the breast. Med Phys 37(11):6096–6100CrossRef
35.
Zurück zum Zitat Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, Yin M, Foster FS (2013) Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control 60(5):888–897CrossRef Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, Yin M, Foster FS (2013) Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control 60(5):888–897CrossRef
36.
Zurück zum Zitat Zafar H, Breathnach A, Subhash HM, Leahy MJ (2015) Linear-array-based photoacoustic imaging of human microcirculation with a range of high frequency transducer probes. J Biomed Opt 20(5):051021CrossRef Zafar H, Breathnach A, Subhash HM, Leahy MJ (2015) Linear-array-based photoacoustic imaging of human microcirculation with a range of high frequency transducer probes. J Biomed Opt 20(5):051021CrossRef
37.
Zurück zum Zitat Kim JY, Lee C, Park K, Lim G, Kim C (2015) Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner. Sci Rep 5:7932CrossRef Kim JY, Lee C, Park K, Lim G, Kim C (2015) Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner. Sci Rep 5:7932CrossRef
38.
Zurück zum Zitat Yao J, Wang L, Yang J-M, Maslov KI, Wong TT, Li L, Huang C-H, Zou J, Wang LV (2015) High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods 12(5):407–410CrossRef Yao J, Wang L, Yang J-M, Maslov KI, Wong TT, Li L, Huang C-H, Zou J, Wang LV (2015) High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods 12(5):407–410CrossRef
39.
Zurück zum Zitat Gamelin J, Maurudis A, Aguirre A, Huang F, Guo P, Wang LV, Zhu Q (2009) A real-time photoacoustic tomography system for small animals. Opt Express 17(13):10489–10498CrossRef Gamelin J, Maurudis A, Aguirre A, Huang F, Guo P, Wang LV, Zhu Q (2009) A real-time photoacoustic tomography system for small animals. Opt Express 17(13):10489–10498CrossRef
40.
Zurück zum Zitat Lin L, Xia J, Wong TT, Li L, Wang LV (2015) In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. J Biomed Opt 20(1):016019CrossRef Lin L, Xia J, Wong TT, Li L, Wang LV (2015) In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. J Biomed Opt 20(1):016019CrossRef
41.
Zurück zum Zitat Tsyboulski DA, Liopo AV, Su R, Ermilov SA, Bachilo SM, Weisman RB, Oraevsky AA (2014) Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography. J Biophotonics 7(8):581–588CrossRef Tsyboulski DA, Liopo AV, Su R, Ermilov SA, Bachilo SM, Weisman RB, Oraevsky AA (2014) Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography. J Biophotonics 7(8):581–588CrossRef
42.
Zurück zum Zitat Ermilov S, Su R, Conjusteau A, Anis F, Nadvoretskiy V, Anastasio M, Oraevsky A (2016) Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation. Ultrason Imaging 38(1):77–95CrossRef Ermilov S, Su R, Conjusteau A, Anis F, Nadvoretskiy V, Anastasio M, Oraevsky A (2016) Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation. Ultrason Imaging 38(1):77–95CrossRef
43.
Zurück zum Zitat Dima A, Burton NC, Ntziachristos V (2014) Multispectral optoacoustic tomography at 64, 128, and 256 channels. J Biomed Opt 19(3):036021CrossRef Dima A, Burton NC, Ntziachristos V (2014) Multispectral optoacoustic tomography at 64, 128, and 256 channels. J Biomed Opt 19(3):036021CrossRef
44.
Zurück zum Zitat Taruttis A, Morscher S, Burton NC, Razansky D, Ntziachristos V (2012) Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS One 7(1):e30491CrossRef Taruttis A, Morscher S, Burton NC, Razansky D, Ntziachristos V (2012) Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS One 7(1):e30491CrossRef
45.
Zurück zum Zitat Ma R, Taruttis A, Ntziachristos V, Razansky D (2009) Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging. Opt Express 17(24):21414–21426CrossRef Ma R, Taruttis A, Ntziachristos V, Razansky D (2009) Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging. Opt Express 17(24):21414–21426CrossRef
46.
Zurück zum Zitat Taruttis A, Herzog E, Razansky D, Ntziachristos V (2010) Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Opt Express 18(19):19592–19602CrossRef Taruttis A, Herzog E, Razansky D, Ntziachristos V (2010) Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Opt Express 18(19):19592–19602CrossRef
47.
Zurück zum Zitat Kruger RA, Kuzmiak CM, Lam RB, Reinecke DR, Del Rio SP, Steed D (2013) Dedicated 3D photoacoustic breast imaging. Med Phys 40(11):113301CrossRef Kruger RA, Kuzmiak CM, Lam RB, Reinecke DR, Del Rio SP, Steed D (2013) Dedicated 3D photoacoustic breast imaging. Med Phys 40(11):113301CrossRef
48.
Zurück zum Zitat Manohar S, Kharine A, van Hespen JC, Steenbergen W, van Leeuwen TG (2005) The Twente Photoacoustic Mammoscope: system overview and performance. Phys Med Biol 50(11):2543CrossRef Manohar S, Kharine A, van Hespen JC, Steenbergen W, van Leeuwen TG (2005) The Twente Photoacoustic Mammoscope: system overview and performance. Phys Med Biol 50(11):2543CrossRef
49.
Zurück zum Zitat Asao Y, Hashizume Y, Suita T, Nagae K-i, Fukutani K, Sudo Y, Matsushita T, Kobayashi S, Tokiwa M, Yamaga I (2016) Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images. J Biomed Opt 21(11):116009CrossRef Asao Y, Hashizume Y, Suita T, Nagae K-i, Fukutani K, Sudo Y, Matsushita T, Kobayashi S, Tokiwa M, Yamaga I (2016) Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images. J Biomed Opt 21(11):116009CrossRef
50.
Zurück zum Zitat Fehm TF, Deán-Ben XL, Ford SJ, Razansky D (2016) In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity. Optica 3(11):1153–1159CrossRef Fehm TF, Deán-Ben XL, Ford SJ, Razansky D (2016) In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity. Optica 3(11):1153–1159CrossRef
51.
Zurück zum Zitat Erpelding TN, Kim C, Pramanik M, Jankovic L, Maslov K, Guo Z, Margenthaler JA, Pashley MD, Wang LV (2010) Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system. Radiology 256(1):102–110CrossRef Erpelding TN, Kim C, Pramanik M, Jankovic L, Maslov K, Guo Z, Margenthaler JA, Pashley MD, Wang LV (2010) Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system. Radiology 256(1):102–110CrossRef
52.
Zurück zum Zitat Sivasubramanian K, Pramanik M (2016) High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system. Biomed Opt Express 7(2):312–323CrossRef Sivasubramanian K, Pramanik M (2016) High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system. Biomed Opt Express 7(2):312–323CrossRef
53.
Zurück zum Zitat Wang D, Wang Y, Wang W, Luo D, Chitgupi U, Geng J, Zhou Y, Wang L, Lovell JF, Xia J (2017) Deep tissue photoacoustic computed tomography with a fast and compact laser system. Biomed Opt Express 8(1):112–123CrossRef Wang D, Wang Y, Wang W, Luo D, Chitgupi U, Geng J, Zhou Y, Wang L, Lovell JF, Xia J (2017) Deep tissue photoacoustic computed tomography with a fast and compact laser system. Biomed Opt Express 8(1):112–123CrossRef
54.
Zurück zum Zitat Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B: Biointerfaces 66(2):274–280CrossRef Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B: Biointerfaces 66(2):274–280CrossRef
55.
Zurück zum Zitat Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3(6):527–533CrossRef Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3(6):527–533CrossRef
56.
Zurück zum Zitat Jeon M, Song W, Huynh E, Kim J, Kim J, Helfield BL, Leung BY, Goertz DE, Zheng G, Oh J (2014) Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. J Biomed Opt 19(1):016005CrossRef Jeon M, Song W, Huynh E, Kim J, Kim J, Helfield BL, Leung BY, Goertz DE, Zheng G, Oh J (2014) Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. J Biomed Opt 19(1):016005CrossRef
57.
Zurück zum Zitat Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G (2012) Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc 134(40):16464–16467CrossRef Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G (2012) Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc 134(40):16464–16467CrossRef
58.
Zurück zum Zitat Huynh E, Jin CS, Wilson BC, Zheng G (2014) Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug Chem 25(4):796–801CrossRef Huynh E, Jin CS, Wilson BC, Zheng G (2014) Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug Chem 25(4):796–801CrossRef
59.
Zurück zum Zitat Wilson K, Homan K, Emelianov S (2012) Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 3:618CrossRef Wilson K, Homan K, Emelianov S (2012) Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 3:618CrossRef
60.
Zurück zum Zitat Hannah A, Luke G, Wilson K, Homan K, Emelianov S (2013) Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano 8(1):250–259CrossRef Hannah A, Luke G, Wilson K, Homan K, Emelianov S (2013) Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano 8(1):250–259CrossRef
61.
Zurück zum Zitat Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRef Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRef
62.
Zurück zum Zitat Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599CrossRef Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599CrossRef
63.
Zurück zum Zitat Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, Ntziachristos V (2015) Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37:415–424CrossRef Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, Ntziachristos V (2015) Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37:415–424CrossRef
64.
Zurück zum Zitat Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K (2015) Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm 482(1):2–10CrossRef Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K (2015) Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm 482(1):2–10CrossRef
65.
Zurück zum Zitat Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WC, Cao W, Wang LV, Zheng G (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10(4):324–332CrossRef Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WC, Cao W, Wang LV, Zheng G (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10(4):324–332CrossRef
66.
Zurück zum Zitat Rieffel J, Chen F, Kim J, Chen G, Shao W, Shao S, Chitgupi U, Hernandez R, Graves SA, Nickles RJ (2015) Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv Mater 27:1785CrossRef Rieffel J, Chen F, Kim J, Chen G, Shao W, Shao S, Chitgupi U, Hernandez R, Graves SA, Nickles RJ (2015) Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv Mater 27:1785CrossRef
67.
Zurück zum Zitat Liu TW, MacDonald TD, Shi J, Wilson BC, Zheng G (2012) Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew Chem Int Ed 51(52):13128–13131CrossRef Liu TW, MacDonald TD, Shi J, Wilson BC, Zheng G (2012) Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew Chem Int Ed 51(52):13128–13131CrossRef
68.
Zurück zum Zitat Sreejith S, Joseph J, Lin M, Menon NV, Borah P, Ng HJ, Loong YX, Kang Y, Yu SW-K, Zhao Y (2015) Near-infrared squaraine dye encapsulated micelles for in vivo fluorescence and photoacoustic bimodal imaging. ACS Nano 9(6):5695–5704CrossRef Sreejith S, Joseph J, Lin M, Menon NV, Borah P, Ng HJ, Loong YX, Kang Y, Yu SW-K, Zhao Y (2015) Near-infrared squaraine dye encapsulated micelles for in vivo fluorescence and photoacoustic bimodal imaging. ACS Nano 9(6):5695–5704CrossRef
69.
Zurück zum Zitat Zhang D, Wu M, Zeng Y, Liao N, Cai Z, Liu G, Liu X, Liu J (2016) Lipid micelles packaged with semiconducting polymer dots as simultaneous MRI/photoacoustic imaging and photodynamic/photothermal dual-modal therapeutic agents for liver cancer. J Mater Chem B 4(4):589–599CrossRef Zhang D, Wu M, Zeng Y, Liao N, Cai Z, Liu G, Liu X, Liu J (2016) Lipid micelles packaged with semiconducting polymer dots as simultaneous MRI/photoacoustic imaging and photodynamic/photothermal dual-modal therapeutic agents for liver cancer. J Mater Chem B 4(4):589–599CrossRef
70.
Zurück zum Zitat Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233CrossRef Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233CrossRef
71.
Zurück zum Zitat Pu K, Mei J, Jokerst JV, Hong G, Antaris AL, Chattopadhyay N, Shuhendler AJ, Kurosawa T, Zhou Y, Gambhir SS (2015) Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adv Mater 27(35):5184–5190CrossRef Pu K, Mei J, Jokerst JV, Hong G, Antaris AL, Chattopadhyay N, Shuhendler AJ, Kurosawa T, Zhou Y, Gambhir SS (2015) Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adv Mater 27(35):5184–5190CrossRef
72.
Zurück zum Zitat Liu J, Geng J, Liao L-D, Thakor N, Gao X, Liu B (2014) Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym Chem 5(8):2854–2862CrossRef Liu J, Geng J, Liao L-D, Thakor N, Gao X, Liu B (2014) Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym Chem 5(8):2854–2862CrossRef
73.
Zurück zum Zitat Kang B, Yu D, Dai Y, Chang S, Chen D, Ding Y (2009) Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small 5(11):1292–1301CrossRef Kang B, Yu D, Dai Y, Chang S, Chen D, Ding Y (2009) Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small 5(11):1292–1301CrossRef
74.
Zurück zum Zitat Zha Z, Deng Z, Li Y, Li C, Wang J, Wang S, Qu E, Dai Z (2013) Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 5(10):4462–4467CrossRef Zha Z, Deng Z, Li Y, Li C, Wang J, Wang S, Qu E, Dai Z (2013) Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 5(10):4462–4467CrossRef
75.
Zurück zum Zitat Hong JY, Yoon H, Jang J (2010) Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis. Small 6(5):679–686CrossRef Hong JY, Yoon H, Jang J (2010) Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis. Small 6(5):679–686CrossRef
76.
Zurück zum Zitat Zha Z, Yue X, Ren Q, Dai Z (2013) Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25(5):777–782CrossRef Zha Z, Yue X, Ren Q, Dai Z (2013) Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25(5):777–782CrossRef
77.
Zurück zum Zitat Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD (2014) Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol 9(8):631–638CrossRef Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD (2014) Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol 9(8):631–638CrossRef
78.
Zurück zum Zitat Lee C, Kim J, Zhang Y, Jeon M, Liu C, Song L, Lovell JF, Kim C (2015) Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines. Biomaterials 73:142–148CrossRef Lee C, Kim J, Zhang Y, Jeon M, Liu C, Song L, Lovell JF, Kim C (2015) Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines. Biomaterials 73:142–148CrossRef
79.
Zurück zum Zitat Fan Q, Cheng K, Hu X, Ma X, Zhang R, Yang M, Lu X, Xing L, Huang W, Gambhir SS (2014) Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging. J Am Chem Soc 136(43):15185–15194CrossRef Fan Q, Cheng K, Hu X, Ma X, Zhang R, Yang M, Lu X, Xing L, Huang W, Gambhir SS (2014) Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging. J Am Chem Soc 136(43):15185–15194CrossRef
80.
Zurück zum Zitat Lee MY, Lee C, Jung HS, Jeon M, Kim KS, Yun SH, Kim C, Hahn SK (2015) Biodegradable photonic melanoidin for theranostic applications. ACS Nano 10:822CrossRef Lee MY, Lee C, Jung HS, Jeon M, Kim KS, Yun SH, Kim C, Hahn SK (2015) Biodegradable photonic melanoidin for theranostic applications. ACS Nano 10:822CrossRef
81.
Zurück zum Zitat Agarwal A, Huang S, O’Donnell M, Day K, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701CrossRef Agarwal A, Huang S, O’Donnell M, Day K, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701CrossRef
82.
Zurück zum Zitat Manohar S, Vaartjes SE, van Hespen JC, Klaase JM, van den Engh FM, Steenbergen W, Van Leeuwen TG (2007) Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 15(19):12277–12285CrossRef Manohar S, Vaartjes SE, van Hespen JC, Klaase JM, van den Engh FM, Steenbergen W, Van Leeuwen TG (2007) Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 15(19):12277–12285CrossRef
83.
Zurück zum Zitat Song J, Kim J, Hwang S, Jeon M, Jeong S, Kim C, Kim S (2016) “Smart” gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation. Chem Commun 52(53):8287–8290CrossRef Song J, Kim J, Hwang S, Jeon M, Jeong S, Kim C, Kim S (2016) “Smart” gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation. Chem Commun 52(53):8287–8290CrossRef
84.
Zurück zum Zitat Kim C, Jeon M, Wang L (2011) Nonionizing photoacoustic cystography in vivo. Opt Lett 36(18):3599CrossRef Kim C, Jeon M, Wang L (2011) Nonionizing photoacoustic cystography in vivo. Opt Lett 36(18):3599CrossRef
85.
Zurück zum Zitat Saini R, Poh CF (2013) Photodynamic therapy: a review and its prospective role in the management of oral potentially malignant disorders. Oral Dis 19(5):440–451CrossRef Saini R, Poh CF (2013) Photodynamic therapy: a review and its prospective role in the management of oral potentially malignant disorders. Oral Dis 19(5):440–451CrossRef
86.
Zurück zum Zitat Chen J, Keltner L, Christophersen J, Zheng F, Krouse M, Singhal A, Wang S-s (2002) New technology for deep light distribution in tissue for phototherapy. Cancer J 8(2):154–163CrossRef Chen J, Keltner L, Christophersen J, Zheng F, Krouse M, Singhal A, Wang S-s (2002) New technology for deep light distribution in tissue for phototherapy. Cancer J 8(2):154–163CrossRef
87.
Zurück zum Zitat Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228CrossRef Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228CrossRef
88.
Zurück zum Zitat Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRef Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRef
89.
Zurück zum Zitat Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G (2013) Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew Chem 125(52):14208–14214CrossRef Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G (2013) Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew Chem 125(52):14208–14214CrossRef
90.
Zurück zum Zitat Lu W, Melancon MP, Xiong C, Huang Q, Elliott A, Song S, Zhang R, Flores LG, Gelovani JG, Wang LV (2011) Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 71(19):6116–6121CrossRef Lu W, Melancon MP, Xiong C, Huang Q, Elliott A, Song S, Zhang R, Flores LG, Gelovani JG, Wang LV (2011) Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 71(19):6116–6121CrossRef
91.
Zurück zum Zitat Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821CrossRef Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821CrossRef
92.
Zurück zum Zitat Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem 123(4):921–925CrossRef Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem 123(4):921–925CrossRef
93.
Zurück zum Zitat Li M-L, Wang JC, Schwartz JA, Gill-Sharp KL, Stoica G, Wang LV (2009) In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt 14(1):010507CrossRef Li M-L, Wang JC, Schwartz JA, Gill-Sharp KL, Stoica G, Wang LV (2009) In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt 14(1):010507CrossRef
94.
Zurück zum Zitat Yang H-W, Liu H-L, Li M-L, Hsi I-W, Fan C-T, Huang C-Y, Lu Y-J, Hua M-Y, Chou H-Y, Liaw J-W (2013) Magnetic gold-nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 34(22):5651–5660CrossRef Yang H-W, Liu H-L, Li M-L, Hsi I-W, Fan C-T, Huang C-Y, Lu Y-J, Hua M-Y, Chou H-Y, Liaw J-W (2013) Magnetic gold-nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 34(22):5651–5660CrossRef
95.
Zurück zum Zitat Chen Y-S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11(2):348–354CrossRef Chen Y-S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11(2):348–354CrossRef
96.
Zurück zum Zitat Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878CrossRef Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878CrossRef
97.
Zurück zum Zitat Tong L, Wei Q, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85(1):21–32CrossRef Tong L, Wei Q, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85(1):21–32CrossRef
98.
Zurück zum Zitat Moon GD, Choi S-W, Cai X, Li W, Cho EC, Jeong U, Wang LV, Xia Y (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133(13):4762–4765CrossRef Moon GD, Choi S-W, Cai X, Li W, Cho EC, Jeong U, Wang LV, Xia Y (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133(13):4762–4765CrossRef
99.
Zurück zum Zitat Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817CrossRef Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817CrossRef
100.
Zurück zum Zitat Everhart JE, Ruhl CE (2009) Burden of digestive diseases in the United States part I: overall and upper gastrointestinal diseases. Gastroenterology 136(2):376–386CrossRef Everhart JE, Ruhl CE (2009) Burden of digestive diseases in the United States part I: overall and upper gastrointestinal diseases. Gastroenterology 136(2):376–386CrossRef
101.
Zurück zum Zitat Han K, Choi H, Jung D, Park S, Cho K, Joung J, Seo H, Chung J, Lee K (2011) A prospective evaluation of conventional cystography for detection of urine leakage at the vesicourethral anastomosis site after radical prostatectomy based on computed tomography. Clin Radiol 66(3):251–256CrossRef Han K, Choi H, Jung D, Park S, Cho K, Joung J, Seo H, Chung J, Lee K (2011) A prospective evaluation of conventional cystography for detection of urine leakage at the vesicourethral anastomosis site after radical prostatectomy based on computed tomography. Clin Radiol 66(3):251–256CrossRef
102.
Zurück zum Zitat Morgan DE, Nallamala LK, Kenney PJ, Mayo MS, Rue LW (2000) CT cystography: radiographic and clinical predictors of bladder rupture. Am J Roentgenol 174(1):89–95CrossRef Morgan DE, Nallamala LK, Kenney PJ, Mayo MS, Rue LW (2000) CT cystography: radiographic and clinical predictors of bladder rupture. Am J Roentgenol 174(1):89–95CrossRef
103.
Zurück zum Zitat Wang Z, Lee CS, Waltzer WC, Liu J, Xie H, Yuan Z, Pan Y (2007) In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography. J Biomed Opt 12(3):034009CrossRef Wang Z, Lee CS, Waltzer WC, Liu J, Xie H, Yuan Z, Pan Y (2007) In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography. J Biomed Opt 12(3):034009CrossRef
104.
Zurück zum Zitat Jeon M, Kim J, Kim C (2013) Photoacoustic cystography. J Vis Exp 76:e50340–e50340 Jeon M, Kim J, Kim C (2013) Photoacoustic cystography. J Vis Exp 76:e50340–e50340
105.
Zurück zum Zitat Koo J, Jeon M, Oh Y, Kang HW, Kim J, Kim C, Oh J (2012) In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes. Phys Med Biol 57(23):7853CrossRef Koo J, Jeon M, Oh Y, Kang HW, Kim J, Kim C, Oh J (2012) In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes. Phys Med Biol 57(23):7853CrossRef
106.
Zurück zum Zitat Park S, Kim J, Jeon M, Song J, Kim C (2014) In vivo photoacoustic and fluorescence cystography using clinically relevant dual modal Indocyanine green. Sensors 14(10):19660–19668CrossRef Park S, Kim J, Jeon M, Song J, Kim C (2014) In vivo photoacoustic and fluorescence cystography using clinically relevant dual modal Indocyanine green. Sensors 14(10):19660–19668CrossRef
107.
Zurück zum Zitat Su R, Ermilov S, Liopo A, Oraevsky A (2013) Laser optoacoustic tomography: towards new technology for biomedical diagnostics. Nucl Instrum Methods Phys Res Sect A 720:58–61CrossRef Su R, Ermilov S, Liopo A, Oraevsky A (2013) Laser optoacoustic tomography: towards new technology for biomedical diagnostics. Nucl Instrum Methods Phys Res Sect A 720:58–61CrossRef
108.
Zurück zum Zitat Kitai T, Torii M, Sugie T, Kanao S, Mikami Y, Shiina T, Toi M (2014) Photoacoustic mammography: initial clinical results. Breast Cancer 21(2):146–153CrossRef Kitai T, Torii M, Sugie T, Kanao S, Mikami Y, Shiina T, Toi M (2014) Photoacoustic mammography: initial clinical results. Breast Cancer 21(2):146–153CrossRef
109.
Zurück zum Zitat Dogra VS, Chinni BK, Valluru KS, Moalem J, Giampoli EJ, Evans K, Rao NA (2014) Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer. Am J Roentgenol 202(6):W552–W558CrossRef Dogra VS, Chinni BK, Valluru KS, Moalem J, Giampoli EJ, Evans K, Rao NA (2014) Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer. Am J Roentgenol 202(6):W552–W558CrossRef
Metadaten
Titel
Photoacoustic Imaging Tools for Nanomedicine
verfasst von
Jeesu Kim
Chulhong Kim
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56333-5_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.