Skip to main content

2016 | OriginalPaper | Buchkapitel

28. Photocatalytic CO2 Reduction to CO by ZIF-9/TiO2

verfasst von : Sibo Wang, Xinchen Wang

Erschienen in: Nanostructured Photocatalysts

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cocatalyst is crucial to the surface kinetic promotion of CO2 photoreduction reaction, because it can accelerate the transport of photoinduced electrons as well as lower the activation energy or overpotential for CO2 conversion reactions. Herein, we present the use of a cobalt-containing zeolitic imidazolate framework (ZIF-9) as a noble-metal-free multifunctional cocatalyst for enhancing the photocatalytic reduction of CO2 to CO by TiO2 photocatalysis. ZIF-9 features the functions of promoting the adsorption/activation of CO2, and facilitating the transfer of photogenerated electrons. By cooperating with TiO2 as a semiconductor photocatalyst to generate energized electrons and holes, ZIF-9 effectively boosted the CO2-to-CO transformation catalysis under simulated sunlight irradiation. Reaction conditions such as the reaction temperature, the reaction solvent, the type of the electron donor, and the water ratio in the reaction medium were investigated and optimized for operating effective CO2 reduction reactions mediated by the TiO2 semiconductor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744CrossRef Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744CrossRef
2.
Zurück zum Zitat Rofer-DePoorter CK (2012) A comprehensive mechanism for the Fischer-Tropsch synthesis. Chem Rev 81:447–474CrossRef Rofer-DePoorter CK (2012) A comprehensive mechanism for the Fischer-Tropsch synthesis. Chem Rev 81:447–474CrossRef
3.
Zurück zum Zitat Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed 50:10502–10509CrossRef Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed 50:10502–10509CrossRef
4.
Zurück zum Zitat Sunley GJ, Watson DJ (2000) High productivity methanol carbonylation catalysis using iridium: the Cativa™ process for the manufacture of acetic acid. Catal Today 58:293–307CrossRef Sunley GJ, Watson DJ (2000) High productivity methanol carbonylation catalysis using iridium: the Cativa™ process for the manufacture of acetic acid. Catal Today 58:293–307CrossRef
5.
Zurück zum Zitat Silvia JS, Cummins CC (2010) Ligand-based reduction of CO2 to CO mediated by an anionic niobium nitride complex. J Am Chem Soc 132:2169–2171CrossRef Silvia JS, Cummins CC (2010) Ligand-based reduction of CO2 to CO mediated by an anionic niobium nitride complex. J Am Chem Soc 132:2169–2171CrossRef
6.
Zurück zum Zitat Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem Int Ed 53:6705–6709CrossRef Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem Int Ed 53:6705–6709CrossRef
7.
Zurück zum Zitat Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T (2012) Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem Int Ed 51:8008–8011CrossRef Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T (2012) Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem Int Ed 51:8008–8011CrossRef
8.
Zurück zum Zitat Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994CrossRef Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994CrossRef
9.
Zurück zum Zitat Wen F, Li C (2013) Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res 46:2355–2364CrossRef Wen F, Li C (2013) Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res 46:2355–2364CrossRef
10.
Zurück zum Zitat Lehn JM, Ziessel R (1982) Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc Natl Acad Sci U S A 79:701–704CrossRef Lehn JM, Ziessel R (1982) Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc Natl Acad Sci U S A 79:701–704CrossRef
11.
Zurück zum Zitat Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638CrossRef Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638CrossRef
12.
Zurück zum Zitat Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Phys Chem Chem Phys 2:5302–5307CrossRef Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Phys Chem Chem Phys 2:5302–5307CrossRef
13.
Zurück zum Zitat Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354CrossRef Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354CrossRef
14.
Zurück zum Zitat Liao F, Huang Y, Ge J, Zheng W, Tedsree K, Collier P, Hong X, Tsang SC (2011) Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 50:2162–2165CrossRef Liao F, Huang Y, Ge J, Zheng W, Tedsree K, Collier P, Hong X, Tsang SC (2011) Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 50:2162–2165CrossRef
15.
Zurück zum Zitat Yu J, Jin J, Cheng B, Jaroniec M (2014) A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A 2:3407–3416CrossRef Yu J, Jin J, Cheng B, Jaroniec M (2014) A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A 2:3407–3416CrossRef
16.
Zurück zum Zitat Wang Y, Li B, Zhang C, Cui L, Kang S, Li X, Zhou L (2013) Ordered mesoporous CeO2-TiO2 composites: highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl Catal B Environ 130–131:277–284CrossRef Wang Y, Li B, Zhang C, Cui L, Kang S, Li X, Zhou L (2013) Ordered mesoporous CeO2-TiO2 composites: highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl Catal B Environ 130–131:277–284CrossRef
17.
Zurück zum Zitat Park H, Choi JH, Choi KM, Lee DK, Kang JK (2012) Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J Mater Chem 22:5304–5307CrossRef Park H, Choi JH, Choi KM, Lee DK, Kang JK (2012) Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J Mater Chem 22:5304–5307CrossRef
18.
Zurück zum Zitat Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T (2010) Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew Chem Int Ed 49:5101–5105CrossRef Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T (2010) Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew Chem Int Ed 49:5101–5105CrossRef
19.
Zurück zum Zitat Li Y, Wang WN, Zhan Z, Woo MH, Wu CY, Biswas P (2010) Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl Catal B Environ 100:386–392CrossRef Li Y, Wang WN, Zhan Z, Woo MH, Wu CY, Biswas P (2010) Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl Catal B Environ 100:386–392CrossRef
20.
Zurück zum Zitat Zhang Q, Li Y, Ackerman EA, Gajdardziska-Josifovska M, Li H (2011) Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl Catal A Gen 400:195–202CrossRef Zhang Q, Li Y, Ackerman EA, Gajdardziska-Josifovska M, Li H (2011) Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl Catal A Gen 400:195–202CrossRef
21.
Zurück zum Zitat Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J Electroanal Chem 396:21–26CrossRef Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J Electroanal Chem 396:21–26CrossRef
22.
Zurück zum Zitat Tseng IH, Chang WC, Wu JCS (2002) Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B Environ 37:37–48CrossRef Tseng IH, Chang WC, Wu JCS (2002) Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B Environ 37:37–48CrossRef
23.
Zurück zum Zitat Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758CrossRef Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758CrossRef
24.
Zurück zum Zitat Zhai Q, Xie S, Fan W, Zhang Q, Wang Y, Deng W, Wang Y (2013) Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew Chem Int Ed 52:5776–5779CrossRef Zhai Q, Xie S, Fan W, Zhang Q, Wang Y, Deng W, Wang Y (2013) Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew Chem Int Ed 52:5776–5779CrossRef
25.
Zurück zum Zitat Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) FTIR study of the low-temperature water–gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts. J Catal 188:176–185CrossRef Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) FTIR study of the low-temperature water–gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts. J Catal 188:176–185CrossRef
26.
Zurück zum Zitat Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O (2013) Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J Am Chem Soc 135:4596–4599CrossRef Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O (2013) Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J Am Chem Soc 135:4596–4599CrossRef
27.
Zurück zum Zitat Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132:2132–2133CrossRef Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132:2132–2133CrossRef
28.
Zurück zum Zitat Kohno Y, Hayashi H, Takenaka S, Tanaka T, Funabiki T, Yoshida S (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobio A Chem 126:117–123CrossRef Kohno Y, Hayashi H, Takenaka S, Tanaka T, Funabiki T, Yoshida S (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobio A Chem 126:117–123CrossRef
29.
Zurück zum Zitat Maeda K, Sekizawa K, Ishitani O (2013) A polymeric-semiconductor–metal-complex hybrid photocatalyst for visible-light CO2 reduction. Chem Commun 49:10127–10129CrossRef Maeda K, Sekizawa K, Ishitani O (2013) A polymeric-semiconductor–metal-complex hybrid photocatalyst for visible-light CO2 reduction. Chem Commun 49:10127–10129CrossRef
30.
Zurück zum Zitat Wang C, Xie Z, deKrafft KE, Lin W (2011) Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454CrossRef Wang C, Xie Z, deKrafft KE, Lin W (2011) Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454CrossRef
31.
Zurück zum Zitat Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636CrossRef Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636CrossRef
32.
Zurück zum Zitat Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148:335–340CrossRef Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148:335–340CrossRef
33.
Zurück zum Zitat Qin Z, Thomas CM, Lee S, Coates GW (2003) Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew Chem Int Ed 42:5484–5487CrossRef Qin Z, Thomas CM, Lee S, Coates GW (2003) Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew Chem Int Ed 42:5484–5487CrossRef
34.
Zurück zum Zitat Cohen CT, Chu T, Coates GW (2005) Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J Am Chem Soc 127:10869–10878CrossRef Cohen CT, Chu T, Coates GW (2005) Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J Am Chem Soc 127:10869–10878CrossRef
35.
Zurück zum Zitat Louie J, Gibby JE, Farnworth MV, Tekavec TN (2002) Efficient nickel-catalyzed [2 + 2 + 2] cycloaddition of CO2 and diynes. J Am Chem Soc 124:15188–15189CrossRef Louie J, Gibby JE, Farnworth MV, Tekavec TN (2002) Efficient nickel-catalyzed [2 + 2 + 2] cycloaddition of CO2 and diynes. J Am Chem Soc 124:15188–15189CrossRef
36.
Zurück zum Zitat Matsuoka S, Yamamoto K, Ogata T, Kusaba M, Nakashima N, Fujita E, Yanagida S (1993) Efficient and selective electron mediation of cobalt complexes with cyclam and related macrocycles in the p-terphenyl-catalyzed photoreduction of carbon dioxide. J Am Chem Soc 115:601–609CrossRef Matsuoka S, Yamamoto K, Ogata T, Kusaba M, Nakashima N, Fujita E, Yanagida S (1993) Efficient and selective electron mediation of cobalt complexes with cyclam and related macrocycles in the p-terphenyl-catalyzed photoreduction of carbon dioxide. J Am Chem Soc 115:601–609CrossRef
37.
Zurück zum Zitat Fischer H, Tom GM, Taube H (1976) Intramolecular electron transfer mediated by 4,4′-bipyridine and related bridging groups. J Am Chem Soc 98:5512–5517CrossRef Fischer H, Tom GM, Taube H (1976) Intramolecular electron transfer mediated by 4,4′-bipyridine and related bridging groups. J Am Chem Soc 98:5512–5517CrossRef
38.
Zurück zum Zitat Rillema DP, Allen G, Meyer TJ, Conrad D (1983) Redox properties of ruthenium(II) tris chelate complexes containing the ligands 2,2′-bipyrazine, 2,2′-bipyridine, and 2,2′-bipyrimidine. Inorg Chem 22:1617–1622CrossRef Rillema DP, Allen G, Meyer TJ, Conrad D (1983) Redox properties of ruthenium(II) tris chelate complexes containing the ligands 2,2′-bipyrazine, 2,2′-bipyridine, and 2,2′-bipyrimidine. Inorg Chem 22:1617–1622CrossRef
39.
Zurück zum Zitat Willner I, Maidan R, Mandler D, Duerr H, Doerr G, Zengerle K (1987) Photosensitized reduction of carbon dioxide to methane and hydrogen evolution in the presence of ruthenium and osmium colloids: strategies to design selectivity of products distribution. J Am Chem Soc 109:6080–6086CrossRef Willner I, Maidan R, Mandler D, Duerr H, Doerr G, Zengerle K (1987) Photosensitized reduction of carbon dioxide to methane and hydrogen evolution in the presence of ruthenium and osmium colloids: strategies to design selectivity of products distribution. J Am Chem Soc 109:6080–6086CrossRef
40.
Zurück zum Zitat Trammell SA, Meyer TJ (1999) Diffusional mediation of surface electron transfer on TiO2. J Phys Chem B 103:104–107CrossRef Trammell SA, Meyer TJ (1999) Diffusional mediation of surface electron transfer on TiO2. J Phys Chem B 103:104–107CrossRef
41.
Zurück zum Zitat Saji T, Aoyagui S (1975) Electron-transfer kinetics of transition-metal complexes in lower oxidation states: IV1. Electrochemical electron-transfer rates of tris(2,2′-bipyridine) complexes of iron, ruthenium, osmium, chromium, titanium, vanadium and molybdenum. J Electroanal Chem 63:31–37CrossRef Saji T, Aoyagui S (1975) Electron-transfer kinetics of transition-metal complexes in lower oxidation states: IV1. Electrochemical electron-transfer rates of tris(2,2′-bipyridine) complexes of iron, ruthenium, osmium, chromium, titanium, vanadium and molybdenum. J Electroanal Chem 63:31–37CrossRef
42.
Zurück zum Zitat Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129CrossRef Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129CrossRef
43.
Zurück zum Zitat Stroppa A, Jain P, Barone P, Marsman M, Perez-Mato JM, Cheetham AK, Kroto HW, Picozzi S (2011) Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal–organic framework. Angew Chem Int Ed 50:5847–5850CrossRef Stroppa A, Jain P, Barone P, Marsman M, Perez-Mato JM, Cheetham AK, Kroto HW, Picozzi S (2011) Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal–organic framework. Angew Chem Int Ed 50:5847–5850CrossRef
44.
Zurück zum Zitat Cooper AI, Rosseinsky MJ (2009) Metal–organic frameworks: improving pore performance. Nat Chem 1:26–27CrossRef Cooper AI, Rosseinsky MJ (2009) Metal–organic frameworks: improving pore performance. Nat Chem 1:26–27CrossRef
45.
46.
Zurück zum Zitat Hayashi H, Cote AP, Furukawa H, O'Keeffe M, Yaghi OM (2007) Zeolite a imidazolate frameworks. Nat Mater 6:501–506CrossRef Hayashi H, Cote AP, Furukawa H, O'Keeffe M, Yaghi OM (2007) Zeolite a imidazolate frameworks. Nat Mater 6:501–506CrossRef
47.
Zurück zum Zitat Zhang JP, Zhang YB, Lin JB, Chen XM (2012) Metal azolate frameworks: from crystal engineering to functional materials. Chem Rev 112:1001–1033CrossRef Zhang JP, Zhang YB, Lin JB, Chen XM (2012) Metal azolate frameworks: from crystal engineering to functional materials. Chem Rev 112:1001–1033CrossRef
48.
Zurück zum Zitat Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191CrossRef Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191CrossRef
49.
Zurück zum Zitat Liu Q, Low ZX, Li L, Razmjou A, Wang K, Yao J, Wang H (2013) ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J Mater Chem A 1:11563–11569CrossRef Liu Q, Low ZX, Li L, Razmjou A, Wang K, Yao J, Wang H (2013) ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J Mater Chem A 1:11563–11569CrossRef
50.
Zurück zum Zitat Wang B, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211CrossRef Wang B, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211CrossRef
51.
Zurück zum Zitat Miralda CM, Macias EE, Zhu M, Ratnasamy P, Carreon MA (2011) Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal 2:180–183CrossRef Miralda CM, Macias EE, Zhu M, Ratnasamy P, Carreon MA (2011) Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal 2:180–183CrossRef
52.
Zurück zum Zitat Dimitrakakis C, Easton CD, Muir BW, Ladewig BP, Hill MR (2013) Spatial control of zeolitic imidazolate framework growth on flexible substrates. Cryst Growth Des 13:4411–4417CrossRef Dimitrakakis C, Easton CD, Muir BW, Ladewig BP, Hill MR (2013) Spatial control of zeolitic imidazolate framework growth on flexible substrates. Cryst Growth Des 13:4411–4417CrossRef
53.
Zurück zum Zitat Aguado S, Bergeret G, Titus MP, Moizan V, Nieto-Draghi C, Bats N, Farrusseng D (2011) Guest-induced gate-opening of a zeolite imidazolate framework. New J Chem 35:546–550CrossRef Aguado S, Bergeret G, Titus MP, Moizan V, Nieto-Draghi C, Bats N, Farrusseng D (2011) Guest-induced gate-opening of a zeolite imidazolate framework. New J Chem 35:546–550CrossRef
54.
Zurück zum Zitat Reyes SC, Santiesteban JG, Ni Z, Paur CS, Kortunov P, Zengel J, Deckman HW (2009) US 2009/0214407, Accessed 27 Aug 2009 Reyes SC, Santiesteban JG, Ni Z, Paur CS, Kortunov P, Zengel J, Deckman HW (2009) US 2009/0214407, Accessed 27 Aug 2009
55.
Zurück zum Zitat Reyes SC, Ni Z, Paur CS, Kortunov P, Zengel J, Deckman HW, Santiesteban JG (2009) US 2009/0211441, Accessed 27 Aug 2009 Reyes SC, Ni Z, Paur CS, Kortunov P, Zengel J, Deckman HW, Santiesteban JG (2009) US 2009/0211441, Accessed 27 Aug 2009
56.
Zurück zum Zitat Wang S, Yao W, Lin J, Ding Z, Wang X (2014) Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew Chem Int Ed 53:1034–1038CrossRef Wang S, Yao W, Lin J, Ding Z, Wang X (2014) Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew Chem Int Ed 53:1034–1038CrossRef
57.
Zurück zum Zitat Wang S, Wang X (2015) Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl Catal B Environ 162:494–500CrossRef Wang S, Wang X (2015) Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl Catal B Environ 162:494–500CrossRef
58.
Zurück zum Zitat Wang S, Lin J, Wang X (2014) Semiconductor–redox catalysis promoted by metal–organic frameworks for CO2 reduction. Phys Chem Chem Phys 16:14656–14660CrossRef Wang S, Lin J, Wang X (2014) Semiconductor–redox catalysis promoted by metal–organic frameworks for CO2 reduction. Phys Chem Chem Phys 16:14656–14660CrossRef
59.
Zurück zum Zitat Wang S, Hou Y, Lin S, Wang X (2014) Water oxidation electrocatalysis by a zeolitic imidazolate framework. Nanoscale 6:9930–9934CrossRef Wang S, Hou Y, Lin S, Wang X (2014) Water oxidation electrocatalysis by a zeolitic imidazolate framework. Nanoscale 6:9930–9934CrossRef
60.
Zurück zum Zitat Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644CrossRef Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644CrossRef
61.
Zurück zum Zitat Wang C, Luo H, Jiang D, Li H, Dai S (2010) Carbon dioxide capture by superbase-derived protic ionic liquids. Angew Chem Int Ed 49:5978–5981CrossRef Wang C, Luo H, Jiang D, Li H, Dai S (2010) Carbon dioxide capture by superbase-derived protic ionic liquids. Angew Chem Int Ed 49:5978–5981CrossRef
62.
Zurück zum Zitat Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927CrossRef Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927CrossRef
63.
Zurück zum Zitat Wen F, Wang X, Huang L, Ma G, Yang J, Li C (2012) A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe2S2] hydrogenase mimic as hydrogen evolution catalyst. ChemSusChem 5:849–853CrossRef Wen F, Wang X, Huang L, Ma G, Yang J, Li C (2012) A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe2S2] hydrogenase mimic as hydrogen evolution catalyst. ChemSusChem 5:849–853CrossRef
64.
Zurück zum Zitat Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578CrossRef Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578CrossRef
65.
Zurück zum Zitat Kho YK, Iwase A, Teoh WY, Mädler L, Kudo A, Amal R (2010) Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J Phys Chem C 114:2821–2829CrossRef Kho YK, Iwase A, Teoh WY, Mädler L, Kudo A, Amal R (2010) Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J Phys Chem C 114:2821–2829CrossRef
66.
Zurück zum Zitat Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA (1996) Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 118:1729–1736CrossRef Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA (1996) Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 118:1729–1736CrossRef
67.
Zurück zum Zitat Kim KH, Kim Y (2008) Theoretical studies for Lewis acid–base interactions and C–H···O weak hydrogen bonding in various CO2 complexes. J Phys Chem A 112:1596–1603CrossRef Kim KH, Kim Y (2008) Theoretical studies for Lewis acid–base interactions and C–H···O weak hydrogen bonding in various CO2 complexes. J Phys Chem A 112:1596–1603CrossRef
68.
Zurück zum Zitat Schneider J, Jia H, Muckerman JT, Fujita E (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41:2036–2051CrossRef Schneider J, Jia H, Muckerman JT, Fujita E (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41:2036–2051CrossRef
69.
Zurück zum Zitat Soedergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556CrossRef Soedergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556CrossRef
Metadaten
Titel
Photocatalytic CO2 Reduction to CO by ZIF-9/TiO2
verfasst von
Sibo Wang
Xinchen Wang
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-26079-2_28

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.