Skip to main content

2019 | OriginalPaper | Buchkapitel

Photodeactivation Channels of Transition Metal Complexes: A Computational Chemistry Perspective

verfasst von : Daniel Escudero

Erschienen in: Transition Metals in Coordination Environments

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A detailed molecular-level understanding of the excited-state (ES) decay dynamics of transition metal complexes (TMCs) is vital to develop the next generation of light-active components in a wide variety of applications related to photochemistry, including optoelectronics, photocatalysis, dye-sensitized solar cells, artificial photosynthesis, photonics sensors and switches, and bioimaging. After photoexcitation, TMCs can undergo a plethora of interconnected relaxation processes, which compete to each other and are controlled by the subtle interplay of electronic and geometrical rearrangements that take place during the ES deactivation dynamics at different timescales. Intrinsic factors such as (i) the spin and character of the electronically ES involved in the process and (ii) the energetic alignment and effective couplings between these states do play a protagonist role in determining the preferred deactivation channels. Extrinsic factors, such as temperature, pressure, excitation wavelength, and environmental effects, can often strongly modify the outcome of the photochemical processes. As kinetic control is always at play, only the fastest processes among all possible deactivation channels are generally observed. Due to their high density of ES of various characters, TMCs usually display rich and chameleonic ES and photochemical properties. Computational chemistry is a powerful and unique tool to provide a microscopic and time-resolved description of these complex processes, and it often constitutes the fundamental ingredient for the interpretation of time-resolved absorption and emission spectroscopic measurements. This chapter provides first a general overview on this complex topic, followed by an overview of the state-of-the-art quantum chemical and reaction dynamics methods to study the photodeactivation dynamics of TMCs and finally illustrates the progress and challenges in this field with recent examples from the literature. Importantly, these examples cover the ultrafast ES decay regime but also the long-lived photodeactivation from thermally equilibrated ES.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Daniel C, Gourlaouen C (2017) Chemical bonding alteration upon electronic excitation in transition metal complexes. Coord Chem Rev 344:131–149CrossRef Daniel C, Gourlaouen C (2017) Chemical bonding alteration upon electronic excitation in transition metal complexes. Coord Chem Rev 344:131–149CrossRef
2.
Zurück zum Zitat Daniel C (2015) Photochemistry and photophysics of transition metal complexes: quantum chemistry. Coord Chem Rev 282–283:19–32CrossRef Daniel C (2015) Photochemistry and photophysics of transition metal complexes: quantum chemistry. Coord Chem Rev 282–283:19–32CrossRef
3.
Zurück zum Zitat González L, Escudero D, Serrano-Andrés L (2012) Progress and challenges in the calculation of electronic excited states. Chem Phys Chem 13:28–51PubMedCrossRef González L, Escudero D, Serrano-Andrés L (2012) Progress and challenges in the calculation of electronic excited states. Chem Phys Chem 13:28–51PubMedCrossRef
4.
Zurück zum Zitat Stufkens DJ, Vlček A (1998) Ligand-dependent excited state behavior of Re(I) and Ru(II) carbonyl-diimine complexes. Coord Chem Rev 177:127–179CrossRef Stufkens DJ, Vlček A (1998) Ligand-dependent excited state behavior of Re(I) and Ru(II) carbonyl-diimine complexes. Coord Chem Rev 177:127–179CrossRef
5.
Zurück zum Zitat Mai S, Plasser F, Dorn J, Fumanal M, Daniel C, González L (2018) Quantitative wave function analysis for excited states of transition metal complexes. Coord Chem Rev 361:74–97CrossRef Mai S, Plasser F, Dorn J, Fumanal M, Daniel C, González L (2018) Quantitative wave function analysis for excited states of transition metal complexes. Coord Chem Rev 361:74–97CrossRef
6.
Zurück zum Zitat Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506PubMedCrossRef Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506PubMedCrossRef
7.
Zurück zum Zitat Jacquemin D, Le Bahers T, Adamo C, Ciofini I (2012) What is the “best” atomic charge model to describe through-space charge-transfer excitations? Phys Chem Chem Phys 14:5383–5388PubMedCrossRef Jacquemin D, Le Bahers T, Adamo C, Ciofini I (2012) What is the “best” atomic charge model to describe through-space charge-transfer excitations? Phys Chem Chem Phys 14:5383–5388PubMedCrossRef
8.
Zurück zum Zitat Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19CrossRef Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19CrossRef
9.
Zurück zum Zitat Penfold TJ, Gindensperger E, Daniel C, Marian CM (2018) Spin-vibronic mechanism for intersystem crossing. Chem Rev 118:6975–7025PubMedCrossRef Penfold TJ, Gindensperger E, Daniel C, Marian CM (2018) Spin-vibronic mechanism for intersystem crossing. Chem Rev 118:6975–7025PubMedCrossRef
10.
Zurück zum Zitat Baryshnikov G, Minaev B, Ågren H (2017) Theory and calculation of the phosphorescence phenomenon. Chem Rev 117:6500–6537PubMedCrossRef Baryshnikov G, Minaev B, Ågren H (2017) Theory and calculation of the phosphorescence phenomenon. Chem Rev 117:6500–6537PubMedCrossRef
11.
Zurück zum Zitat Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238PubMedCrossRef Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238PubMedCrossRef
13.
Zurück zum Zitat Chergui M (2015) Ultrafast photophysics of transition metal complexes. Acc Chem Res 48:801–808PubMedCrossRef Chergui M (2015) Ultrafast photophysics of transition metal complexes. Acc Chem Res 48:801–808PubMedCrossRef
14.
Zurück zum Zitat Chergui M (2012) On the interplay between charge, spin and structural dynamics in transition metal complexes. Dalton Trans 41:13022–13029PubMedCrossRef Chergui M (2012) On the interplay between charge, spin and structural dynamics in transition metal complexes. Dalton Trans 41:13022–13029PubMedCrossRef
15.
Zurück zum Zitat Tang KC, Liu KL, Chen IC (2004) Rapid intersystem crossin in highly phosphorescent iridium complexes. Chem Phys Lett 386:437–441CrossRef Tang KC, Liu KL, Chen IC (2004) Rapid intersystem crossin in highly phosphorescent iridium complexes. Chem Phys Lett 386:437–441CrossRef
16.
Zurück zum Zitat Cannizzo A, Blanco-Rodríguez AM, El Nahhas A, Szebera J, Zalis S, Vlček A, Chergui M (2008) Femtosecond fluorescence and intersystem crossing in Rhenium(I) carbonyl-bipyridine complexes. J Am Chem Soc 130:8967–8974PubMedCrossRef Cannizzo A, Blanco-Rodríguez AM, El Nahhas A, Szebera J, Zalis S, Vlček A, Chergui M (2008) Femtosecond fluorescence and intersystem crossing in Rhenium(I) carbonyl-bipyridine complexes. J Am Chem Soc 130:8967–8974PubMedCrossRef
17.
Zurück zum Zitat Cannizzo A, van Mourik F, Gawelda W, Zgrablic G, Bressler C, Chergui M (2006) Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+. Angew Chem Int Ed 45:3174–3176CrossRef Cannizzo A, van Mourik F, Gawelda W, Zgrablic G, Bressler C, Chergui M (2006) Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+. Angew Chem Int Ed 45:3174–3176CrossRef
18.
Zurück zum Zitat Damrauer NH, Cerullo G, Yeh A, Boussie TR, Shank CV, McCusker JK (1997) Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+. Science 275:54–57PubMedCrossRef Damrauer NH, Cerullo G, Yeh A, Boussie TR, Shank CV, McCusker JK (1997) Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+. Science 275:54–57PubMedCrossRef
19.
Zurück zum Zitat van der Veen RM, Cannizzo A, van Mourik F, Vlček A, Chergui M (2011) Vibrational relaxation and intersystem crossing of binuclear metal complexes in solution. J Am Chem Soc 133:305–315PubMedCrossRef van der Veen RM, Cannizzo A, van Mourik F, Vlček A, Chergui M (2011) Vibrational relaxation and intersystem crossing of binuclear metal complexes in solution. J Am Chem Soc 133:305–315PubMedCrossRef
20.
Zurück zum Zitat Kukura P, McCamant DW, Mathies RA (2007) Femtosecond stimulated raman spectroscopy. Annu Rev Phys Chem 58:461–488PubMedCrossRef Kukura P, McCamant DW, Mathies RA (2007) Femtosecond stimulated raman spectroscopy. Annu Rev Phys Chem 58:461–488PubMedCrossRef
21.
Zurück zum Zitat Yoon S, Kukura P, Stuart CM, Mathies RA (2006) Direct observation of the ultrafast intersystem crossing in tris (2, 2-bipyridine) Ruthenium(II) using femtosecond stimulated raman spectroscopy. Mol Phys 104:1275–1282CrossRef Yoon S, Kukura P, Stuart CM, Mathies RA (2006) Direct observation of the ultrafast intersystem crossing in tris (2, 2-bipyridine) Ruthenium(II) using femtosecond stimulated raman spectroscopy. Mol Phys 104:1275–1282CrossRef
22.
Zurück zum Zitat Smeigh AL, Creelman M, Mathies RA, McCusker JK (2008) Femtosecond time-resolved optical and raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching. J Am Chem Soc 130:14105–14107PubMedCrossRef Smeigh AL, Creelman M, Mathies RA, McCusker JK (2008) Femtosecond time-resolved optical and raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching. J Am Chem Soc 130:14105–14107PubMedCrossRef
23.
Zurück zum Zitat Chergui M, Zewail AH (2009) Electron and X-ray methods of ultrafast structural dynamics: advances and applications. Chem Phys Chem 10:28–43PubMedCrossRef Chergui M, Zewail AH (2009) Electron and X-ray methods of ultrafast structural dynamics: advances and applications. Chem Phys Chem 10:28–43PubMedCrossRef
24.
Zurück zum Zitat Zhang W, Alonso-Mori R, Bergmann U, Bressler C, Chollet M, Galler A, Gawelda W, Hadt RG, Hartsock RW, Kroll T, Kjaer KS, Kubicek K, Lemke HT, Liang HW, Meyer DA, Nielsen MM, Purser C, Robinson JS, Solomon EI, Sun Z, Sokaras D, van Driel TB, Vanko G, Weng TC, Zhu D, Gaffney KJ (2014) Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509:345–348PubMedPubMedCentralCrossRef Zhang W, Alonso-Mori R, Bergmann U, Bressler C, Chollet M, Galler A, Gawelda W, Hadt RG, Hartsock RW, Kroll T, Kjaer KS, Kubicek K, Lemke HT, Liang HW, Meyer DA, Nielsen MM, Purser C, Robinson JS, Solomon EI, Sun Z, Sokaras D, van Driel TB, Vanko G, Weng TC, Zhu D, Gaffney KJ (2014) Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509:345–348PubMedPubMedCentralCrossRef
25.
26.
Zurück zum Zitat Carbery WP, Verma A, Turner DB (2017) Spin-orbit coupling drives femtosecond nonadiabatic dynamics in a transition metal compound. J Phys Chem Lett 8:1315–1322PubMedCrossRef Carbery WP, Verma A, Turner DB (2017) Spin-orbit coupling drives femtosecond nonadiabatic dynamics in a transition metal compound. J Phys Chem Lett 8:1315–1322PubMedCrossRef
27.
Zurück zum Zitat Heitz MC, Finger K, Daniel C (1997) Photochemistry of organometallics: quantum chemistry and photodissociation dynamics. Coord Chem Rev 159:171–193CrossRef Heitz MC, Finger K, Daniel C (1997) Photochemistry of organometallics: quantum chemistry and photodissociation dynamics. Coord Chem Rev 159:171–193CrossRef
28.
Zurück zum Zitat Ribbing C, Daniel C (1994) Spin-orbit coupled excited states in transition metal complexes: a configuration interaction treatment of HCo(CO)4. J Chem Phys 100:6591CrossRef Ribbing C, Daniel C (1994) Spin-orbit coupled excited states in transition metal complexes: a configuration interaction treatment of HCo(CO)4. J Chem Phys 100:6591CrossRef
29.
Zurück zum Zitat Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323PubMedCrossRef Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323PubMedCrossRef
30.
Zurück zum Zitat Escudero D, Laurent A, Jacquemin D (2017) Time-dependent density functional theory: a tool to explore excited states. In: Leszczynski J, Kaczmarek-Kedziera A, Puzyn T, Papadopoulos M, Reis HK, Shukla M (eds) Handbook of computational chemistry. Springer, Cham, pp 1–43 Escudero D, Laurent A, Jacquemin D (2017) Time-dependent density functional theory: a tool to explore excited states. In: Leszczynski J, Kaczmarek-Kedziera A, Puzyn T, Papadopoulos M, Reis HK, Shukla M (eds) Handbook of computational chemistry. Springer, Cham, pp 1–43
31.
Zurück zum Zitat Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164CrossRef Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164CrossRef
32.
Zurück zum Zitat Yarkony DR (2012) Nonadiabatic quantum chemistry—past, present and future. Chem Rev 112:481–498PubMedCrossRef Yarkony DR (2012) Nonadiabatic quantum chemistry—past, present and future. Chem Rev 112:481–498PubMedCrossRef
33.
Zurück zum Zitat Wagenknecht PS, Ford PC (2011) Metal centered ligand field excited states: their roles in the design and performance of transition metal based photochemical molecular devices. Coord Chem Rev 255:591–616CrossRef Wagenknecht PS, Ford PC (2011) Metal centered ligand field excited states: their roles in the design and performance of transition metal based photochemical molecular devices. Coord Chem Rev 255:591–616CrossRef
34.
Zurück zum Zitat Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) Photochemistry of tris (2, 2′-bipyridine) Ruthenium(2+) ion. J Am Chem Soc 104:4803–4810CrossRef Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) Photochemistry of tris (2, 2′-bipyridine) Ruthenium(2+) ion. J Am Chem Soc 104:4803–4810CrossRef
35.
Zurück zum Zitat Sajoto T, Djurovich PI, Tamayo AB, Oxgaard J, Goddard WA III, Thompson ME (2009) Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J Am Chem Soc 131:9813–9822PubMedCrossRef Sajoto T, Djurovich PI, Tamayo AB, Oxgaard J, Goddard WA III, Thompson ME (2009) Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J Am Chem Soc 131:9813–9822PubMedCrossRef
36.
Zurück zum Zitat Escudero D (2016) Quantitative prediction of photoluminescence quantum yields of phosphors from first principles. Chem Sci 7:1262–1267PubMedCrossRef Escudero D (2016) Quantitative prediction of photoluminescence quantum yields of phosphors from first principles. Chem Sci 7:1262–1267PubMedCrossRef
37.
Zurück zum Zitat Zhang X, Jacquemin D, Peng Q, Shuai Z, Escudero D (2018) General approach to compute phosphorescent OLED efficiency. J Phys Chem C 122:6340–6347CrossRef Zhang X, Jacquemin D, Peng Q, Shuai Z, Escudero D (2018) General approach to compute phosphorescent OLED efficiency. J Phys Chem C 122:6340–6347CrossRef
38.
Zurück zum Zitat Mai S, Marquetand P, González L (2015) A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int J Quantum Chem 115:1215–1231CrossRef Mai S, Marquetand P, González L (2015) A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int J Quantum Chem 115:1215–1231CrossRef
39.
Zurück zum Zitat Cui G, Thiel W (2014) Generalized trajectory surface-hopping method for internal conversion and intersystem crossing. J Chem Phys 141:124101PubMedCrossRef Cui G, Thiel W (2014) Generalized trajectory surface-hopping method for internal conversion and intersystem crossing. J Chem Phys 141:124101PubMedCrossRef
40.
Zurück zum Zitat Crespo-Otero R, Barbatti M (2018) Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics. Chem Rev 118:7026–7068PubMedCrossRef Crespo-Otero R, Barbatti M (2018) Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics. Chem Rev 118:7026–7068PubMedCrossRef
41.
Zurück zum Zitat Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrín DA (2018) Spectroscopy in complex environments from QM–MM Simulations. Chem Rev 118:4071–4113PubMedCrossRef Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrín DA (2018) Spectroscopy in complex environments from QM–MM Simulations. Chem Rev 118:4071–4113PubMedCrossRef
42.
Zurück zum Zitat Mennucci B (2012) Polarizable continuum model. WIREs Comput Mol Sci 2:386–404CrossRef Mennucci B (2012) Polarizable continuum model. WIREs Comput Mol Sci 2:386–404CrossRef
43.
Zurück zum Zitat Barboza Formiga AL, Vancoillie S, Pierloot K (2013) Electronic spectra of N-heterocyclic pentacyanoferrate(II) complexes in different solvents, studied by multiconfigurational perturbation theory. Inorg Chem 52:10653–10663CrossRef Barboza Formiga AL, Vancoillie S, Pierloot K (2013) Electronic spectra of N-heterocyclic pentacyanoferrate(II) complexes in different solvents, studied by multiconfigurational perturbation theory. Inorg Chem 52:10653–10663CrossRef
44.
Zurück zum Zitat Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. J Phys Chem 124:124520CrossRef Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. J Phys Chem 124:124520CrossRef
45.
Zurück zum Zitat Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Phys Chem 125:054103CrossRef Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Phys Chem 125:054103CrossRef
46.
Zurück zum Zitat Sisto A, Glowacki DR, Martinez TD (2014) Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework. Acc Chem Res 47:2857–2866PubMedCrossRef Sisto A, Glowacki DR, Martinez TD (2014) Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework. Acc Chem Res 47:2857–2866PubMedCrossRef
47.
Zurück zum Zitat Curutchet C, Muñoz-Losa A, Monti S, Kongsted J, Scholes GD, Mennucci B (2009) Electronic energy transfer in condensed phase studied by a polarizable QM/MM model. J Chem Theory Comput 5:1838–1848PubMedCrossRef Curutchet C, Muñoz-Losa A, Monti S, Kongsted J, Scholes GD, Mennucci B (2009) Electronic energy transfer in condensed phase studied by a polarizable QM/MM model. J Chem Theory Comput 5:1838–1848PubMedCrossRef
48.
Zurück zum Zitat Jacob CR, Neugebauer J (2014) Subsystem density-functional theory. WIREs Comput Mol Sci 4:325–362CrossRef Jacob CR, Neugebauer J (2014) Subsystem density-functional theory. WIREs Comput Mol Sci 4:325–362CrossRef
49.
Zurück zum Zitat Andersson K, Malmqvist PA, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218CrossRef Andersson K, Malmqvist PA, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218CrossRef
50.
Zurück zum Zitat Malmqvist PA, Pierloot K, Shahi ARM, Cramer JC, Gagliardi L (2008) The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J Chem Phys 128:204109PubMedCrossRef Malmqvist PA, Pierloot K, Shahi ARM, Cramer JC, Gagliardi L (2008) The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J Chem Phys 128:204109PubMedCrossRef
51.
Zurück zum Zitat Pierloot K (2011) Transition metals compounds: outstanding challenges for multiconfigurational methods. Int J Quantum Chem 111:3291–3301CrossRef Pierloot K (2011) Transition metals compounds: outstanding challenges for multiconfigurational methods. Int J Quantum Chem 111:3291–3301CrossRef
52.
Zurück zum Zitat Radoń M, Drablik G (2018) Spin states and other ligand-field states of aqua complexes revisited with multireference ab Initio calculations including solvation effects. J Chem Theory Comput 14:4010–4027PubMedCrossRef Radoń M, Drablik G (2018) Spin states and other ligand-field states of aqua complexes revisited with multireference ab Initio calculations including solvation effects. J Chem Theory Comput 14:4010–4027PubMedCrossRef
53.
Zurück zum Zitat Stein CJ, Reiher M (2016) Automated selection of active orbital spaces. J Chem Theory Comput 12:1760–1771PubMedCrossRef Stein CJ, Reiher M (2016) Automated selection of active orbital spaces. J Chem Theory Comput 12:1760–1771PubMedCrossRef
54.
Zurück zum Zitat Bao JJ, Dong SS, Gagliardi L, Truhlar DG (2018) Automatic selection of an active space for calculating electronic excitation spectra by MS-CASPT2 or MC-PDFT. J Chem Theory Comput 14:2017–2025PubMedCrossRef Bao JJ, Dong SS, Gagliardi L, Truhlar DG (2018) Automatic selection of an active space for calculating electronic excitation spectra by MS-CASPT2 or MC-PDFT. J Chem Theory Comput 14:2017–2025PubMedCrossRef
55.
Zurück zum Zitat Wouters S, Bogaerts T, van der Voort P, van Speybroeck V, van Neck D (2014) DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn (salen). J Chem Phys 140:241103PubMedCrossRef Wouters S, Bogaerts T, van der Voort P, van Speybroeck V, van Neck D (2014) DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn (salen). J Chem Phys 140:241103PubMedCrossRef
56.
Zurück zum Zitat Marti KH, Reiher M (2011) New electron correlation theories for transition metal chemistry. Phys Chem Chem Phys 13:6750–6759PubMedCrossRef Marti KH, Reiher M (2011) New electron correlation theories for transition metal chemistry. Phys Chem Chem Phys 13:6750–6759PubMedCrossRef
57.
Zurück zum Zitat Chan GKL, Sharma S (2011) The density matrix renormalization group in quantum chemistry. Annu Rev Phys Chem 62:465–481PubMedCrossRef Chan GKL, Sharma S (2011) The density matrix renormalization group in quantum chemistry. Annu Rev Phys Chem 62:465–481PubMedCrossRef
58.
Zurück zum Zitat Li Manni G, Smart SD, Alavi A (2016) Combining the complete active space self-consistent field method and the full configuration interaction quantum monte carlo within a super-CI framework, with application to challenging metal-porphyrins. J Chem Theory Comput 12:1245–1258PubMedCrossRef Li Manni G, Smart SD, Alavi A (2016) Combining the complete active space self-consistent field method and the full configuration interaction quantum monte carlo within a super-CI framework, with application to challenging metal-porphyrins. J Chem Theory Comput 12:1245–1258PubMedCrossRef
59.
Zurück zum Zitat Phung QM, Wouters S, Pierloot K (2016) Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: a benchmark study. J Chem Theory Comput 12:4352–4361PubMedCrossRef Phung QM, Wouters S, Pierloot K (2016) Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: a benchmark study. J Chem Theory Comput 12:4352–4361PubMedCrossRef
60.
Zurück zum Zitat Freitag L, Knecht S, Angeli C, Reiher M (2017) Multireference perturbation theory with cholesky decomposition for the density matrix renormalization group. J Chem Theory Comput 13:451–459PubMedPubMedCentralCrossRef Freitag L, Knecht S, Angeli C, Reiher M (2017) Multireference perturbation theory with cholesky decomposition for the density matrix renormalization group. J Chem Theory Comput 13:451–459PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Ziegler T, Seth M, Krykunov M, Autschbach J, Wang F (2009) On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments. J Chem Phys 130:154102PubMedCrossRef Ziegler T, Seth M, Krykunov M, Autschbach J, Wang F (2009) On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments. J Chem Phys 130:154102PubMedCrossRef
62.
Zurück zum Zitat Ziegler T (1991) Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev 91:651–667CrossRef Ziegler T (1991) Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev 91:651–667CrossRef
63.
Zurück zum Zitat Escudero D, Thiel W (2014) Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes. J Chem Phys 140:194105PubMedCrossRef Escudero D, Thiel W (2014) Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes. J Chem Phys 140:194105PubMedCrossRef
64.
Zurück zum Zitat Latouche C, Skouteris D, Palazzetti F, Barone V (2015) TD-DFT benchmark on inorganic Pt(II) and Ir(III) complexes. J Chem Theory Comput 11:3281–3289PubMedCrossRef Latouche C, Skouteris D, Palazzetti F, Barone V (2015) TD-DFT benchmark on inorganic Pt(II) and Ir(III) complexes. J Chem Theory Comput 11:3281–3289PubMedCrossRef
65.
Zurück zum Zitat Niehaus TA, Hofbeck T, Yersin H (2015) Charge-transfer excited states in phosphorescent organo-transition metal compounds: a difficult case for time dependent density functional theory? RSC Adv 5:63318–63329CrossRef Niehaus TA, Hofbeck T, Yersin H (2015) Charge-transfer excited states in phosphorescent organo-transition metal compounds: a difficult case for time dependent density functional theory? RSC Adv 5:63318–63329CrossRef
66.
Zurück zum Zitat Le Bahers T, Brémond E, Ciofini I, Adamo C (2014) The nature of vertical excited states of dyes containing metals for DSSC applications: insights from TD-DFT and density based indexes. Phys Chem Chem Phys 16:14435–14444PubMedCrossRef Le Bahers T, Brémond E, Ciofini I, Adamo C (2014) The nature of vertical excited states of dyes containing metals for DSSC applications: insights from TD-DFT and density based indexes. Phys Chem Chem Phys 16:14435–14444PubMedCrossRef
67.
Zurück zum Zitat Fumanal M, Daniel C (2016) Description of excited states in [Re(Imidazole)(CO)3(Phen)]+ including solvent and spin-orbit coupling effects: Density functional theory versus multiconfigurational wavefunction approach. J Comput Chem 37:2454–2466PubMedCrossRef Fumanal M, Daniel C (2016) Description of excited states in [Re(Imidazole)(CO)3(Phen)]+ including solvent and spin-orbit coupling effects: Density functional theory versus multiconfigurational wavefunction approach. J Comput Chem 37:2454–2466PubMedCrossRef
68.
Zurück zum Zitat Georgieva I, Aquino AJA, Trendafilova N, Santos PS, Lischka H (2010) Solvatochromic and ionochromic effects of Iron(II) bis(1, 10-phenanthroline) dicyano: a theoretical study. Inorg Chem 49:1634–1646PubMedCrossRef Georgieva I, Aquino AJA, Trendafilova N, Santos PS, Lischka H (2010) Solvatochromic and ionochromic effects of Iron(II) bis(1, 10-phenanthroline) dicyano: a theoretical study. Inorg Chem 49:1634–1646PubMedCrossRef
69.
Zurück zum Zitat Atkins AJ, González L (2017) Trajectory surface-hopping dynamics including intersystem crossing in [Ru(bpy)3]2+. J Phys Chem Lett 8:3840–3845PubMedCrossRef Atkins AJ, González L (2017) Trajectory surface-hopping dynamics including intersystem crossing in [Ru(bpy)3]2+. J Phys Chem Lett 8:3840–3845PubMedCrossRef
70.
Zurück zum Zitat Atkins AJ, Talotta F, Freitag L, Boggio-Pasqua M, González L (2017) Assessing excited state energy gaps with time-dependent density functional theory on Ru(II) complexes. J Chem Theory and Comput 13:4123–4145CrossRef Atkins AJ, Talotta F, Freitag L, Boggio-Pasqua M, González L (2017) Assessing excited state energy gaps with time-dependent density functional theory on Ru(II) complexes. J Chem Theory and Comput 13:4123–4145CrossRef
71.
Zurück zum Zitat Gagliardi L, Truhlar DG, Li Manni G, Carlson RK, Hoyer CE, Bao JL (2017) Multiconfiguration pair-density functional theory: a new way to treat strongly correlated systems. Acc Chem Res 50:66–73PubMedCrossRef Gagliardi L, Truhlar DG, Li Manni G, Carlson RK, Hoyer CE, Bao JL (2017) Multiconfiguration pair-density functional theory: a new way to treat strongly correlated systems. Acc Chem Res 50:66–73PubMedCrossRef
72.
Zurück zum Zitat Sharkas K, Savin A, Jensen HJA, Toulouse J (2012) A multiconfigurational hybrid density-functional theory. J Chem Phys 137:044104PubMedCrossRef Sharkas K, Savin A, Jensen HJA, Toulouse J (2012) A multiconfigurational hybrid density-functional theory. J Chem Phys 137:044104PubMedCrossRef
73.
Zurück zum Zitat Grimme S, Waletzke M (1999) A combination of Kohn-Sham density functional theory and multi-reference configuration interaction methods. J Chem Phys 111:5645CrossRef Grimme S, Waletzke M (1999) A combination of Kohn-Sham density functional theory and multi-reference configuration interaction methods. J Chem Phys 111:5645CrossRef
74.
Zurück zum Zitat Lyskov I, Kleinschmidt M, Marian CM (2016) Redesign of the DFT/MRCI hamiltonian. J Chem Phys 144:034104PubMedCrossRef Lyskov I, Kleinschmidt M, Marian CM (2016) Redesign of the DFT/MRCI hamiltonian. J Chem Phys 144:034104PubMedCrossRef
75.
Zurück zum Zitat Marian CM (2012) Spin–orbit coupling and intersystem crossing in molecules. WIREs Comput Mol Sci 2:187–203CrossRef Marian CM (2012) Spin–orbit coupling and intersystem crossing in molecules. WIREs Comput Mol Sci 2:187–203CrossRef
76.
Zurück zum Zitat Pauli W (1927) Zur quantenmechanik des magnetischen elektrons. Z Phys 43:601–623CrossRef Pauli W (1927) Zur quantenmechanik des magnetischen elektrons. Z Phys 43:601–623CrossRef
77.
Zurück zum Zitat Park JW, Shiozaki T (2017) Analytical derivative coupling for multistate CASPT2 theory. J Chem Theory Comput 13:2561–2570PubMedCrossRef Park JW, Shiozaki T (2017) Analytical derivative coupling for multistate CASPT2 theory. J Chem Theory Comput 13:2561–2570PubMedCrossRef
78.
Zurück zum Zitat Sand AM, Hoyer CE, Sharkas K, Kidder KM, Lindh R, Truhlar DG, Gagliardi L (2018) Analytic gradients for complete active space pair-density functional theory. J Chem Theory Comput 14:126–138PubMedCrossRef Sand AM, Hoyer CE, Sharkas K, Kidder KM, Lindh R, Truhlar DG, Gagliardi L (2018) Analytic gradients for complete active space pair-density functional theory. J Chem Theory Comput 14:126–138PubMedCrossRef
79.
Zurück zum Zitat Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet state of phenyl cation. a hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Acc 99:95–99CrossRef Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet state of phenyl cation. a hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Acc 99:95–99CrossRef
80.
Zurück zum Zitat Heully JL, Alary F, Boggio-Pasqua M (2009) Spin-orbit effects on the photophysical properties of [Ru(bpy)3]2+. J Chem Phys 131:184308PubMedCrossRef Heully JL, Alary F, Boggio-Pasqua M (2009) Spin-orbit effects on the photophysical properties of [Ru(bpy)3]2+. J Chem Phys 131:184308PubMedCrossRef
81.
Zurück zum Zitat Maeda S, Ohno K, Morokuma K (2009) Automated global mapping of minimal energy points on seams of crossing by the anharmonic downward distortion following method: a case study of H2CO. J Phys Chem A 113:1704–1710PubMedCrossRef Maeda S, Ohno K, Morokuma K (2009) Automated global mapping of minimal energy points on seams of crossing by the anharmonic downward distortion following method: a case study of H2CO. J Phys Chem A 113:1704–1710PubMedCrossRef
82.
Zurück zum Zitat Maeda S, Taketsugu T, Ohno K, Morokuma K (2015) From roaming atoms to hopping surfaces: mapping out global reaction routes in photochemistry. J Am Chem Soc 137:3433–3445PubMedCrossRef Maeda S, Taketsugu T, Ohno K, Morokuma K (2015) From roaming atoms to hopping surfaces: mapping out global reaction routes in photochemistry. J Am Chem Soc 137:3433–3445PubMedCrossRef
83.
Zurück zum Zitat Harabuchi Y, Eng J, Gindensperger E, Taketsugu T, Maeda S, Daniel C (2016) Exploring the mechanism of ultrafast intersystem crossing in rhenium(I) carbonyl bipyridine halide complexes: key vibrational modes and spin-vibronic quantum dynamics. J Chem Theory Comput 12:2335–2345PubMedCrossRef Harabuchi Y, Eng J, Gindensperger E, Taketsugu T, Maeda S, Daniel C (2016) Exploring the mechanism of ultrafast intersystem crossing in rhenium(I) carbonyl bipyridine halide complexes: key vibrational modes and spin-vibronic quantum dynamics. J Chem Theory Comput 12:2335–2345PubMedCrossRef
84.
Zurück zum Zitat Niu Y, Peng P, Deng C, Gao X, Shuai Z (2010) Theory of excited state decays and optical spectra: application to polyatomic molecules. J Phys Chem A 114:7817–7831PubMedCrossRef Niu Y, Peng P, Deng C, Gao X, Shuai Z (2010) Theory of excited state decays and optical spectra: application to polyatomic molecules. J Phys Chem A 114:7817–7831PubMedCrossRef
85.
Zurück zum Zitat Minaev B, Baryshnikov G, Ågren H (2014) Principles of phosphorescent organic light emitting devices. Phys Chem Chem Phys 16:1719–1758PubMedCrossRef Minaev B, Baryshnikov G, Ågren H (2014) Principles of phosphorescent organic light emitting devices. Phys Chem Chem Phys 16:1719–1758PubMedCrossRef
86.
Zurück zum Zitat Minaev B (1999) The singlet-triplet absorption and photodissociation of the HOCl, HOBr, and HOY molecules calculated by the MCSCF quadratic response method. J Phys Chem A 103:7294–7309CrossRef Minaev B (1999) The singlet-triplet absorption and photodissociation of the HOCl, HOBr, and HOY molecules calculated by the MCSCF quadratic response method. J Phys Chem A 103:7294–7309CrossRef
87.
Zurück zum Zitat Mori K, Goumans TPM, van Lenthe E, Wang F (2014) Predicting phosphorescent lifetimes and zero-field splitting of organometallic complexes with time-dependent density functional theory including spin-orbit coupling. Phys Chem Chem Phys 16:14523–14530PubMedCrossRef Mori K, Goumans TPM, van Lenthe E, Wang F (2014) Predicting phosphorescent lifetimes and zero-field splitting of organometallic complexes with time-dependent density functional theory including spin-orbit coupling. Phys Chem Chem Phys 16:14523–14530PubMedCrossRef
88.
Zurück zum Zitat Peng Q, Niu Y, Shi Q, Gao X, Shuai Z (2013) Correlation function formalism for triplet excited state decay: combined spin-orbit and nonadiabatic couplings. J Chem Theory Comput 9:1132–1143PubMedCrossRef Peng Q, Niu Y, Shi Q, Gao X, Shuai Z (2013) Correlation function formalism for triplet excited state decay: combined spin-orbit and nonadiabatic couplings. J Chem Theory Comput 9:1132–1143PubMedCrossRef
89.
Zurück zum Zitat Etinski M, Tatchen J, Marian CM (2017) Time-dependent approaches for the calculation of intersystem crossing rates. J Chem Phys 134:154105CrossRef Etinski M, Tatchen J, Marian CM (2017) Time-dependent approaches for the calculation of intersystem crossing rates. J Chem Phys 134:154105CrossRef
90.
Zurück zum Zitat Kleinschmidt M, van Wüllen C, Marian CM (2015) Intersystem-crossing and phosphorescence rates in fac-Ir(III)(ppy)3: a theoretical study involving multi-reference configuration interaction wavefunctions. J Chem Phys 142:094301PubMedCrossRef Kleinschmidt M, van Wüllen C, Marian CM (2015) Intersystem-crossing and phosphorescence rates in fac-Ir(III)(ppy)3: a theoretical study involving multi-reference configuration interaction wavefunctions. J Chem Phys 142:094301PubMedCrossRef
91.
Zurück zum Zitat Sousa C, de Graaf C, Rudavskyi A, Broer R, Tatchen J, Etinski M, Marian CM (2013) Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe (2, 2-bipyridine)3]2+. Chem Eur J 19:17541–17551PubMedCrossRef Sousa C, de Graaf C, Rudavskyi A, Broer R, Tatchen J, Etinski M, Marian CM (2013) Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe (2, 2-bipyridine)3]2+. Chem Eur J 19:17541–17551PubMedCrossRef
92.
Zurück zum Zitat Beck MH, Jäckle A, Worth GA, Meyer HD (2000) The multi-configurational time-dependent hartree approach: a highly efficient algorithm for propagating wavepackets. Phys Rep 324:1–105CrossRef Beck MH, Jäckle A, Worth GA, Meyer HD (2000) The multi-configurational time-dependent hartree approach: a highly efficient algorithm for propagating wavepackets. Phys Rep 324:1–105CrossRef
93.
Zurück zum Zitat Fumanal M, Gindensperger E, Daniel C (2018) Ultrafast intersystem crossing vs internal conversion in α-diimine transition metal complexes: quantum evidence. J Phys Chem Lett 9:5189–5195PubMedCrossRef Fumanal M, Gindensperger E, Daniel C (2018) Ultrafast intersystem crossing vs internal conversion in α-diimine transition metal complexes: quantum evidence. J Phys Chem Lett 9:5189–5195PubMedCrossRef
94.
Zurück zum Zitat Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061–1071CrossRef Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061–1071CrossRef
95.
Zurück zum Zitat Richter M, Marquetand P, González-Vázquez J, Sola I, González L (2011) SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J Chem Theory Comput 7:1253–1258PubMedCrossRef Richter M, Marquetand P, González-Vázquez J, Sola I, González L (2011) SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J Chem Theory Comput 7:1253–1258PubMedCrossRef
97.
Zurück zum Zitat Tavernelli I, Curchod B, Rothlisberger U (2011) Nonadiabatic molecular dynamics with solvent effects: a LR-TDDFT QM/MM study of Ruthenium(II) tris (Bipyridine) in water. Chem Phys 391:101–109CrossRef Tavernelli I, Curchod B, Rothlisberger U (2011) Nonadiabatic molecular dynamics with solvent effects: a LR-TDDFT QM/MM study of Ruthenium(II) tris (Bipyridine) in water. Chem Phys 391:101–109CrossRef
98.
Zurück zum Zitat Liu XY, Zhang YH, Fang WH, Cui G (2018) Early-time excited-state relaxation dynamics of iridium compounds: distinct roles of electron and hole transfer. J Phys Chem A 122:5518–5532PubMedCrossRef Liu XY, Zhang YH, Fang WH, Cui G (2018) Early-time excited-state relaxation dynamics of iridium compounds: distinct roles of electron and hole transfer. J Phys Chem A 122:5518–5532PubMedCrossRef
99.
Zurück zum Zitat Jacquemin D, Escudero D (2018) Thermal equilibration between excited states or solvent effects: unveiling the origins of anomalous emissions in heteroleptic Ru(II) complexes. Phys Chem Chem Phys 20:11559–11563PubMedCrossRef Jacquemin D, Escudero D (2018) Thermal equilibration between excited states or solvent effects: unveiling the origins of anomalous emissions in heteroleptic Ru(II) complexes. Phys Chem Chem Phys 20:11559–11563PubMedCrossRef
100.
Zurück zum Zitat Kamecka A, Muszynska W, Kapturkiewicz A (2017) Luminescence properties of heteroleptic [Ru(H)(CO)(N^N)(tpp)2]+ complexes: comparison with their [Os(H)(CO)(N^N)(tpp)2]+ analogues. J Lumin 192:842–852 Kamecka A, Muszynska W, Kapturkiewicz A (2017) Luminescence properties of heteroleptic [Ru(H)(CO)(N^N)(tpp)2]+ complexes: comparison with their [Os(H)(CO)(N^N)(tpp)2]+ analogues. J Lumin 192:842–852
101.
Zurück zum Zitat Escudero D, Jacquemin D (2015) Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective. Dalton Trans 44:8346–8355PubMedCrossRef Escudero D, Jacquemin D (2015) Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective. Dalton Trans 44:8346–8355PubMedCrossRef
102.
Zurück zum Zitat El-Sayed M (1963) Spin orbit coupling and the radiationless processes in nitrogen heterocyclics. J Chem Phys 38:2834–2838CrossRef El-Sayed M (1963) Spin orbit coupling and the radiationless processes in nitrogen heterocyclics. J Chem Phys 38:2834–2838CrossRef
Metadaten
Titel
Photodeactivation Channels of Transition Metal Complexes: A Computational Chemistry Perspective
verfasst von
Daniel Escudero
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-11714-6_9