Skip to main content

2017 | OriginalPaper | Buchkapitel

14. Photoenergy Conversion

verfasst von : Yohei Ishida, Shinsuke Takagi

Erschienen in: Inorganic Nanosheets and Nanosheet-Based Materials

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter briefly reviews the use of inorganic nanosheets for a conversion of photoenergy into other forms of energies such as chemical, electrical, mechanical, and photoenergy. Some representative works have achieved efficient photoenergy conversion as well as the effective utilization of unique advantages of two-dimensional nanosheets such as highly crystalline two-dimensional surfaces, high aspect ratios, and the separation of the front and back sides by atomically thin surfaces. Since the modern world is highly reliant on energies in various forms, novel and more efficient energy conversion systems using inorganic nanosheets are desired toward future sustainable society.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
2.
Zurück zum Zitat Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320CrossRef Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320CrossRef
3.
Zurück zum Zitat Wang L, Sasaki T (2014) Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem Rev 114:9455–9486CrossRef Wang L, Sasaki T (2014) Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem Rev 114:9455–9486CrossRef
4.
Zurück zum Zitat Paek S-M, Jung H, Lee Y-J, Park M, Hwang S-J, Choy J-H (2006) Exfoliation and reassembling route to mesoporous titania nanohybrids. Chem Mater 18:1134–1140CrossRef Paek S-M, Jung H, Lee Y-J, Park M, Hwang S-J, Choy J-H (2006) Exfoliation and reassembling route to mesoporous titania nanohybrids. Chem Mater 18:1134–1140CrossRef
5.
Zurück zum Zitat Liu G, Wang L, Sun C, Chen Z, Yan X, Cheng L et al (2009) Nitrogen-doped titania nanosheets towards visible light response. Chem Commun 1383–1383 Liu G, Wang L, Sun C, Chen Z, Yan X, Cheng L et al (2009) Nitrogen-doped titania nanosheets towards visible light response. Chem Commun 1383–1383
6.
Zurück zum Zitat Allen MR, Thibert A, Sabio EM, Browning ND, Larsen DS, Osterloh FE (2010) Evolution of physical and photocatalytic properties in the layered titanates A2Ti4O9 (A = K, H) and in nanosheets derived by chemical exfoliation. Chem Mater 22:1220–1228CrossRef Allen MR, Thibert A, Sabio EM, Browning ND, Larsen DS, Osterloh FE (2010) Evolution of physical and photocatalytic properties in the layered titanates A2Ti4O9 (A = K, H) and in nanosheets derived by chemical exfoliation. Chem Mater 22:1220–1228CrossRef
7.
Zurück zum Zitat Domen K, Kudo A, Shibata M, Tanaka A, Maruya KI, Onishi T (1986) Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure. J Chem Soc Chem Commun 1706–1712 Domen K, Kudo A, Shibata M, Tanaka A, Maruya KI, Onishi T (1986) Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure. J Chem Soc Chem Commun 1706–1712
8.
Zurück zum Zitat Sayama K, Tanaka A, Domen K (1991) Photocatalytic decomposition of water over platinum-intercalated potassium niobate (K4Nb6O17). J Phys Chem 95:1345–1348CrossRef Sayama K, Tanaka A, Domen K (1991) Photocatalytic decomposition of water over platinum-intercalated potassium niobate (K4Nb6O17). J Phys Chem 95:1345–1348CrossRef
9.
Zurück zum Zitat Compton OC, Mullet CH, Chiang S, Osterloh FE (2008) A building block approach to photochemical water-splitting catalysts based on layered niobate nanosheets. J Phys Chem C 112:6202–6208CrossRef Compton OC, Mullet CH, Chiang S, Osterloh FE (2008) A building block approach to photochemical water-splitting catalysts based on layered niobate nanosheets. J Phys Chem C 112:6202–6208CrossRef
10.
Zurück zum Zitat Tan B, Wu Y (2006) Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J Phys Chem B 110:15932–15938CrossRef Tan B, Wu Y (2006) Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J Phys Chem B 110:15932–15938CrossRef
11.
Zurück zum Zitat Akatsuka K, Ebina Y, Muramatsu M, Sato T, Hester H, Kumaresan D et al (2007) Photoelectrochemical properties of alternating multilayer films composed of titania nanosheets and Zn porphyrin. Langmuir 23:6730–6736CrossRef Akatsuka K, Ebina Y, Muramatsu M, Sato T, Hester H, Kumaresan D et al (2007) Photoelectrochemical properties of alternating multilayer films composed of titania nanosheets and Zn porphyrin. Langmuir 23:6730–6736CrossRef
12.
Zurück zum Zitat Akatsuka K, Takanashi G, Ebina Y, Haga M-A, Sasaki T (2012) Electronic band structure of exfoliated titanium- and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J Phys Chem C 116:12426–12433CrossRef Akatsuka K, Takanashi G, Ebina Y, Haga M-A, Sasaki T (2012) Electronic band structure of exfoliated titanium- and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J Phys Chem C 116:12426–12433CrossRef
13.
Zurück zum Zitat Irie M, Kobatake S, Horichi M (2001) Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291:1769–1772CrossRef Irie M, Kobatake S, Horichi M (2001) Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291:1769–1772CrossRef
14.
Zurück zum Zitat Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light. Nature 425:145–145CrossRef Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light. Nature 425:145–145CrossRef
15.
Zurück zum Zitat Nabetani Y, Takamura H, Hayasaka Y, Shimada T, Takagi S, Tachibana H et al (2011) A photoactivated artificial muscle model unit: reversible, photoinduced sliding of nanosheets. J Am Chem Soc 133:17130–17133CrossRef Nabetani Y, Takamura H, Hayasaka Y, Shimada T, Takagi S, Tachibana H et al (2011) A photoactivated artificial muscle model unit: reversible, photoinduced sliding of nanosheets. J Am Chem Soc 133:17130–17133CrossRef
16.
Zurück zum Zitat Nabetani Y, Takamura H, Hayasaka Y, Sasamoto S, Tanamura Y, Shimada T et al (2013) An artificial muscle model unit based on inorganic nanosheet sliding by photochemical reaction. Nanoscale 5:3182CrossRef Nabetani Y, Takamura H, Hayasaka Y, Sasamoto S, Tanamura Y, Shimada T et al (2013) An artificial muscle model unit based on inorganic nanosheet sliding by photochemical reaction. Nanoscale 5:3182CrossRef
17.
Zurück zum Zitat Perrin JB (1924) Fluorescence et lois générales relatives aux vitesses de réaction. Comptes rendus hebdomadaires des séances de l’Académie des Sci 178:1401–1406 Perrin JB (1924) Fluorescence et lois générales relatives aux vitesses de réaction. Comptes rendus hebdomadaires des séances de l’Académie des Sci 178:1401–1406
18.
Zurück zum Zitat Förster Th (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 6:166–175CrossRef Förster Th (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 6:166–175CrossRef
19.
Zurück zum Zitat Förster Th (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 1–2:55–75CrossRef Förster Th (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 1–2:55–75CrossRef
20.
Zurück zum Zitat Baumann J, Fayer MD (1986) Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: effects of spatial geometry on time-resolved observables. J Chem Phys 85:4087CrossRef Baumann J, Fayer MD (1986) Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: effects of spatial geometry on time-resolved observables. J Chem Phys 85:4087CrossRef
21.
Zurück zum Zitat Kelley RF, Lee SJ, Wilson TM, Nakamura Y, Tiede DM, Osuka A et al (2008) Intramolecular energy transfer within butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms. J Am Chem Soc 130:4277–4284CrossRef Kelley RF, Lee SJ, Wilson TM, Nakamura Y, Tiede DM, Osuka A et al (2008) Intramolecular energy transfer within butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms. J Am Chem Soc 130:4277–4284CrossRef
22.
Zurück zum Zitat Hoffman JB, Choi H, Kamat PV (2014) Size-dependent energy transfer pathways in cdse quantum dot-squaraine light-harvesting assemblies: förster versus dexter. J Phys Chem C 118:18453–18461CrossRef Hoffman JB, Choi H, Kamat PV (2014) Size-dependent energy transfer pathways in cdse quantum dot-squaraine light-harvesting assemblies: förster versus dexter. J Phys Chem C 118:18453–18461CrossRef
23.
Zurück zum Zitat Zhang X, Marocico CA, Lunz M, Gerard VA, Gun’ko YK, Lesnyak V et al (2014) Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano 8:1273–1283 Zhang X, Marocico CA, Lunz M, Gerard VA, Gun’ko YK, Lesnyak V et al (2014) Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano 8:1273–1283
24.
Zurück zum Zitat Becker K, Lupton JM, Müller J, Rogach AL, Talapin DV, Weller H et al (2006) Electrical control of Förster energy transfer. Nat Mater 5:777–781CrossRef Becker K, Lupton JM, Müller J, Rogach AL, Talapin DV, Weller H et al (2006) Electrical control of Förster energy transfer. Nat Mater 5:777–781CrossRef
25.
Zurück zum Zitat Inagaki S, Ohtani O, Goto Y, Okamoto K, Ikai M, Yamanaka K-I et al (2009) Light harvesting by a periodic mesoporous organosilica chromophore. Angew Chem Int Ed 48:4042–4046CrossRef Inagaki S, Ohtani O, Goto Y, Okamoto K, Ikai M, Yamanaka K-I et al (2009) Light harvesting by a periodic mesoporous organosilica chromophore. Angew Chem Int Ed 48:4042–4046CrossRef
26.
Zurück zum Zitat Hildebrandt N, Wegner KD, Algar WR (2014) Luminescent terbium complexes: superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coord Chem Rev 273–274:125–138CrossRef Hildebrandt N, Wegner KD, Algar WR (2014) Luminescent terbium complexes: superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coord Chem Rev 273–274:125–138CrossRef
27.
Zurück zum Zitat Frischmann PD, Mahata K, Würthner F (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870CrossRef Frischmann PD, Mahata K, Würthner F (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870CrossRef
28.
Zurück zum Zitat Silvi S, Credi A (2015) Luminescent sensors based on quantum dot-molecule conjugates. Chem Soc Rev 44:4275–4289CrossRef Silvi S, Credi A (2015) Luminescent sensors based on quantum dot-molecule conjugates. Chem Soc Rev 44:4275–4289CrossRef
29.
Zurück zum Zitat McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ et al (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521CrossRef McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ et al (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521CrossRef
30.
Zurück zum Zitat Takagi S, Tryk DA, Inoue H (2002) Photochemical energy transfer of cationic porphyrin complexes on clay surface. J Phys Chem B 106:5455–5460CrossRef Takagi S, Tryk DA, Inoue H (2002) Photochemical energy transfer of cationic porphyrin complexes on clay surface. J Phys Chem B 106:5455–5460CrossRef
31.
Zurück zum Zitat Ishida Y, Shimada T, Takagi S (2014) Surface-fixation induced emission of porphyrazine dye by a complexation with inorganic nanosheets. J Phys Chem C 118:20466–20471CrossRef Ishida Y, Shimada T, Takagi S (2014) Surface-fixation induced emission of porphyrazine dye by a complexation with inorganic nanosheets. J Phys Chem C 118:20466–20471CrossRef
32.
Zurück zum Zitat Villemure G, Detellier C, Szabo AG (1986) Fluorescence of clay-intercalated methylviologen. J Am Chem Soc 108:4658–4659CrossRef Villemure G, Detellier C, Szabo AG (1986) Fluorescence of clay-intercalated methylviologen. J Am Chem Soc 108:4658–4659CrossRef
33.
Zurück zum Zitat Shichi T, Takagi K (2000) Clay minerals as photochemical reaction fields. J Photochem Photobiol C Photochem Rev 1:113–130CrossRef Shichi T, Takagi K (2000) Clay minerals as photochemical reaction fields. J Photochem Photobiol C Photochem Rev 1:113–130CrossRef
34.
Zurück zum Zitat Bujdák J (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Appl Clay Sci 34:58–73CrossRef Bujdák J (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Appl Clay Sci 34:58–73CrossRef
35.
Zurück zum Zitat Ghosh PK, Bard AJ (1984) Photochemistry of tris (2, 2′-bipyridyl) ruthenium (II) in colloidal clay suspensions. J Phys Chem 88:5519–5526CrossRef Ghosh PK, Bard AJ (1984) Photochemistry of tris (2, 2′-bipyridyl) ruthenium (II) in colloidal clay suspensions. J Phys Chem 88:5519–5526CrossRef
36.
Zurück zum Zitat Takagi S, Shimada T, Eguchi M, Yui T, Yoshida H, Tryk DA et al (2002) High-density adsorption of cationic porphyrins on clay layer surfaces without aggregation: the size-matching effect. Langmuir 18:2265–2272CrossRef Takagi S, Shimada T, Eguchi M, Yui T, Yoshida H, Tryk DA et al (2002) High-density adsorption of cationic porphyrins on clay layer surfaces without aggregation: the size-matching effect. Langmuir 18:2265–2272CrossRef
37.
Zurück zum Zitat Takagi S, Shimada T, Ishida Y, Fujimura T, Masui D, Tachibana H et al (2013) Size-matching effect on inorganic nanosheets: control of distance, alignment, and orientation of molecular adsorption as a bottom-up methodology for nanomaterials. Langmuir 29:2108–2119CrossRef Takagi S, Shimada T, Ishida Y, Fujimura T, Masui D, Tachibana H et al (2013) Size-matching effect on inorganic nanosheets: control of distance, alignment, and orientation of molecular adsorption as a bottom-up methodology for nanomaterials. Langmuir 29:2108–2119CrossRef
38.
Zurück zum Zitat Ishida Y, Shimada T, Masui D, Tachibana H, Inoue H, Takagi S (2011) Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J Am Chem Soc 133:14280–14286CrossRef Ishida Y, Shimada T, Masui D, Tachibana H, Inoue H, Takagi S (2011) Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J Am Chem Soc 133:14280–14286CrossRef
39.
Zurück zum Zitat Ishida Y, Kulasekharan R, Shimada T, Ramamurthy V, Takagi S (2014) Supramolecular-surface photochemistry: supramolecular assembly organized on a clay surface facilitates energy transfer between an encapsulated donor and a free acceptor. J Phys Chem C 118:10198–10203CrossRef Ishida Y, Kulasekharan R, Shimada T, Ramamurthy V, Takagi S (2014) Supramolecular-surface photochemistry: supramolecular assembly organized on a clay surface facilitates energy transfer between an encapsulated donor and a free acceptor. J Phys Chem C 118:10198–10203CrossRef
40.
Zurück zum Zitat Ishida Y, Kulasekharan R, Shimada T, Takagi S, Ramamurthy V (2013) Efficient singlet-singlet energy transfer in a novel host-guest assembly composed of an organic cavitand, aromatic molecules, and a clay nanosheet. Langmuir 29:1748–1753CrossRef Ishida Y, Kulasekharan R, Shimada T, Takagi S, Ramamurthy V (2013) Efficient singlet-singlet energy transfer in a novel host-guest assembly composed of an organic cavitand, aromatic molecules, and a clay nanosheet. Langmuir 29:1748–1753CrossRef
41.
Zurück zum Zitat Kulasekharan R, Ramamurthy V (2011) New water-soluble organic capsules are effective in controlling excited-state processes of guest molecules. Org Lett 13:5092–5095CrossRef Kulasekharan R, Ramamurthy V (2011) New water-soluble organic capsules are effective in controlling excited-state processes of guest molecules. Org Lett 13:5092–5095CrossRef
42.
Zurück zum Zitat Ishida Y, Shimada T, Takagi S (2013) Artificial light-harvesting model in a self-assembly composed of cationic dyes and inorganic nanosheet. J Phys Chem C 117:9154–9163CrossRef Ishida Y, Shimada T, Takagi S (2013) Artificial light-harvesting model in a self-assembly composed of cationic dyes and inorganic nanosheet. J Phys Chem C 117:9154–9163CrossRef
43.
Zurück zum Zitat Ishida Y, Shimada T, Tachibana H, Inoue H, Takagi S (2012) Regulation of the collisional self-quenching of fluorescence in clay/porphyrin complex by strong host-guest interaction. J Phys Chem A 116:12065–12072CrossRef Ishida Y, Shimada T, Tachibana H, Inoue H, Takagi S (2012) Regulation of the collisional self-quenching of fluorescence in clay/porphyrin complex by strong host-guest interaction. J Phys Chem A 116:12065–12072CrossRef
44.
Zurück zum Zitat Ishida Y, Fujimura T, Masui D, Shimada T, Tachibana H, Inoue H et al (2011) What lowers the efficiency of an energy transfer reaction between porphyrin dyes on clay surface? Clay Sci 15:169–174 Ishida Y, Fujimura T, Masui D, Shimada T, Tachibana H, Inoue H et al (2011) What lowers the efficiency of an energy transfer reaction between porphyrin dyes on clay surface? Clay Sci 15:169–174
45.
Zurück zum Zitat Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777CrossRef Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777CrossRef
46.
Zurück zum Zitat Morales-Narváez E, Merkoçi A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308CrossRef Morales-Narváez E, Merkoçi A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308CrossRef
47.
Zurück zum Zitat Piao Y, Liu F, Seo TS (2011) The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5-graphene oxide. Chem Commun 47:12149–12151CrossRef Piao Y, Liu F, Seo TS (2011) The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5-graphene oxide. Chem Commun 47:12149–12151CrossRef
48.
Zurück zum Zitat Liu F, Choi JY, Seo TS (2010) Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens Bioelectron 25:2361–2365CrossRef Liu F, Choi JY, Seo TS (2010) Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens Bioelectron 25:2361–2365CrossRef
49.
Zurück zum Zitat Balapanuru J, Yang J-X, Xiao S, Bao Q, Jahan M, Polavarapu L et al (2010) A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Ed 49:6549–6553CrossRef Balapanuru J, Yang J-X, Xiao S, Bao Q, Jahan M, Polavarapu L et al (2010) A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Ed 49:6549–6553CrossRef
50.
Zurück zum Zitat Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517CrossRef Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517CrossRef
51.
Zurück zum Zitat Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001CrossRef Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001CrossRef
52.
Zurück zum Zitat Ha HD, Han DJ, Choi JS, Park M, Seo TS (2014) Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon. Small 10:3858–3862CrossRef Ha HD, Han DJ, Choi JS, Park M, Seo TS (2014) Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon. Small 10:3858–3862CrossRef
53.
Zurück zum Zitat Scheuschner N, Ochedowski O, Kaulitz A-M, Gillen R, Schleberger M, Maultzsch J (2014) Photoluminescence of freestanding single- and few-layer MoS2. Phys Rev B 89:125406CrossRef Scheuschner N, Ochedowski O, Kaulitz A-M, Gillen R, Schleberger M, Maultzsch J (2014) Photoluminescence of freestanding single- and few-layer MoS2. Phys Rev B 89:125406CrossRef
54.
Zurück zum Zitat Prins F, Goodman AJ, Tisdale WA (2014) Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett 14:6087–6091CrossRef Prins F, Goodman AJ, Tisdale WA (2014) Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett 14:6087–6091CrossRef
55.
Zurück zum Zitat Wang Q, Wang W, Lei J, Xu N, Gao F, Ju H (2013) Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal Chem 85:12182–12188CrossRef Wang Q, Wang W, Lei J, Xu N, Gao F, Ju H (2013) Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal Chem 85:12182–12188CrossRef
56.
Zurück zum Zitat Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215CrossRef Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215CrossRef
57.
Zurück zum Zitat Sakamoto J, van Heijst J, Lukin O, Schlüter AD (2009) Two-dimensional polymers: just a dream of synthetic chemists? Angew Chem Int Ed 48:1030–1069CrossRef Sakamoto J, van Heijst J, Lukin O, Schlüter AD (2009) Two-dimensional polymers: just a dream of synthetic chemists? Angew Chem Int Ed 48:1030–1069CrossRef
58.
Zurück zum Zitat Sakamoto R, Takada K, Sun X, Pal T, Tsukamoto T, Phua EJH et al (2016) The coordination nanosheet (CONASH). Coordin Chem Rev 320–321:118–128 Sakamoto R, Takada K, Sun X, Pal T, Tsukamoto T, Phua EJH et al (2016) The coordination nanosheet (CONASH). Coordin Chem Rev 320–321:118–128
Metadaten
Titel
Photoenergy Conversion
verfasst von
Yohei Ishida
Shinsuke Takagi
Copyright-Jahr
2017
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56496-6_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.