Skip to main content

2021 | OriginalPaper | Buchkapitel

Photoluminescence Spectroscopy Applied to Semiconducting Nanowires: A Valuable Probe for Assessing Lattice Defects, Crystal Structures, and Carriers’ Temperature

verfasst von : Davide Tedeschi, Marta De Luca, Antonio Polimeni

Erschienen in: Fundamental Properties of Semiconductor Nanowires

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Photoluminescence (PL) spectroscopy is a reliable, non-invasive tool widely employed to investigate the electronic properties of semiconductors and their nanostructures near the band-gap edge states. PL is particularly relevant for determining the energy and symmetry properties of excitons as well as the nature and relative abundances of defects in a semiconductor material. In this chapter, we will present PL measurements on InP nanowires (NWs), a notable material system for NW structures. We address the electronic and defect properties of wurtzite NWs, and provide a comparison with the zincblende counterpart. PL as a function of various external parameters, such as photoexcited carrier density and temperature, allows us to assign the origin of various recombination bands typically observed in InP NWs grown by selective area epitaxy or by vapor–liquid–solid method. The possibility to explore the density of states of NWs is implemented by PL-excitation measurements as a function of polarization, which unveil the optical selection rules pertinent to the wurtzite crystal phase. Finally, a careful analysis of the PL lineshape provides also access to carriers’ temperature and thus precious insight on carrier relaxation phenomena that occur in thin NWs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.I. Pankove, Cathodoluminescence of n-Type GaAs. J. Appl. Phys. 39(12), 5368–5371 (1968)CrossRef J.I. Pankove, Cathodoluminescence of n-Type GaAs. J. Appl. Phys. 39(12), 5368–5371 (1968)CrossRef
2.
Zurück zum Zitat P.Y. Yu, M. Cardona, Fundamentals of Semiconductors—Physics and Materials Properties (Springer, Heidelberg, 2005)CrossRef P.Y. Yu, M. Cardona, Fundamentals of Semiconductors—Physics and Materials Properties (Springer, Heidelberg, 2005)CrossRef
3.
Zurück zum Zitat H.J. Joyce, J. Wong-Leung, C.K. Yong, C.J. Docherty, S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, J. Lloyd-Hughes, L.M. Herz, M.B. Johnston, Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. Nano Lett. 12(10), 5325–5230 (2012)CrossRef H.J. Joyce, J. Wong-Leung, C.K. Yong, C.J. Docherty, S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, J. Lloyd-Hughes, L.M. Herz, M.B. Johnston, Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. Nano Lett. 12(10), 5325–5230 (2012)CrossRef
4.
Zurück zum Zitat J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M.H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H.Q. Xu, L. Samuelson, K. Deppert, M.T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339(6), 1057–1060 (2013) J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M.H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H.Q. Xu, L. Samuelson, K. Deppert, M.T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339(6), 1057–1060 (2013)
5.
Zurück zum Zitat M. Yoshimura, E. Nakai, K. Tomioka, T. Fukui, Indium tin oxide and indium phosphide heterojunction nanowire array solar cells. Appl. Phys. Lett. 103(24), 243111 (2013)CrossRef M. Yoshimura, E. Nakai, K. Tomioka, T. Fukui, Indium tin oxide and indium phosphide heterojunction nanowire array solar cells. Appl. Phys. Lett. 103(24), 243111 (2013)CrossRef
6.
Zurück zum Zitat S.A. Mann, S.Z. Oener, A. Cavalli, J.E.M. Haverkort, E.P.A.M. Bakkers, E.C. Garnett, Quantifying losses and thermodynamic limits in nanophotonic solar cells. Nat. Nanotech. 11(12), 1071–1075 (2016)CrossRef S.A. Mann, S.Z. Oener, A. Cavalli, J.E.M. Haverkort, E.P.A.M. Bakkers, E.C. Garnett, Quantifying losses and thermodynamic limits in nanophotonic solar cells. Nat. Nanotech. 11(12), 1071–1075 (2016)CrossRef
7.
Zurück zum Zitat Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, M. Razeghi, Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 98(18), 181102 (2011)CrossRef Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, M. Razeghi, Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 98(18), 181102 (2011)CrossRef
8.
Zurück zum Zitat R. Flückiger, R. Lövblom, M. Alexandrova, O. Ostinelli, C.R. Bolognesi, Type-II InP/GaAsSb double-heterojunction bipolar transistors with fMAX> 700 GHz. Appl. Phys. Express 7(3), 034105 (2014)CrossRef R. Flückiger, R. Lövblom, M. Alexandrova, O. Ostinelli, C.R. Bolognesi, Type-II InP/GaAsSb double-heterojunction bipolar transistors with fMAX> 700 GHz. Appl. Phys. Express 7(3), 034105 (2014)CrossRef
9.
Zurück zum Zitat P. Caroff, J. Bolinsson, J. Johansson, Crystal phases in III–V nanowires: from random toward engineered polytypism. IEEE J. Sel. Top. Quant. Electron. 17(4), 829–846 (2011)CrossRef P. Caroff, J. Bolinsson, J. Johansson, Crystal phases in III–V nanowires: from random toward engineered polytypism. IEEE J. Sel. Top. Quant. Electron. 17(4), 829–846 (2011)CrossRef
10.
Zurück zum Zitat J. Johansson, Z. Zanolli, K.A. Dick, Polytype attainability in III–V semiconductor nanowires. Cryst. Growth Des. 16(1), 371–379 (2016)CrossRef J. Johansson, Z. Zanolli, K.A. Dick, Polytype attainability in III–V semiconductor nanowires. Cryst. Growth Des. 16(1), 371–379 (2016)CrossRef
11.
Zurück zum Zitat S. Assali, L. Gagliano, D.S. Oliveira, M.A. Verheijen, S.R. Plissard, L.F. Feiner, E.P.A.M. Bakkers, Exploring crystal phase switching in GaP nanowires. Nano Lett. 15(12), 8062–8069 (2015)CrossRef S. Assali, L. Gagliano, D.S. Oliveira, M.A. Verheijen, S.R. Plissard, L.F. Feiner, E.P.A.M. Bakkers, Exploring crystal phase switching in GaP nanowires. Nano Lett. 15(12), 8062–8069 (2015)CrossRef
12.
Zurück zum Zitat N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, V. Zwiller, Crystal phase quantum dots. Nano Lett. 10(4), 1198–1201 (2010)CrossRef N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, V. Zwiller, Crystal phase quantum dots. Nano Lett. 10(4), 1198–1201 (2010)CrossRef
13.
Zurück zum Zitat R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)CrossRef R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)CrossRef
14.
Zurück zum Zitat Q. Gao, V.G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li, Y. Guo, L. Fu, H.H. Tan, C. Jagadish, Simultaneous selective-area and vapor–liquid–solid growth of InP Nanowire Arrays. Nano Lett. 16(7), 4361–4367 (2016)CrossRef Q. Gao, V.G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li, Y. Guo, L. Fu, H.H. Tan, C. Jagadish, Simultaneous selective-area and vapor–liquid–solid growth of InP Nanowire Arrays. Nano Lett. 16(7), 4361–4367 (2016)CrossRef
15.
Zurück zum Zitat M.H. Hadj Alouane, N. Chauvin, H. Khmissi, K. Naji, B. Ilahi, H. Maaref, G. Patriarche, M. Gendry, C. Bru-Chevallier, Excitonic properties of wurtzite InP nanowires grown on silicon substrate. Nanotechnology 24(3), 035704 (2012)CrossRef M.H. Hadj Alouane, N. Chauvin, H. Khmissi, K. Naji, B. Ilahi, H. Maaref, G. Patriarche, M. Gendry, C. Bru-Chevallier, Excitonic properties of wurtzite InP nanowires grown on silicon substrate. Nanotechnology 24(3), 035704 (2012)CrossRef
16.
Zurück zum Zitat Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H.H. Tan, C. Jagadish, Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett. 14(9), 5206–5211 (2014)CrossRef Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H.H. Tan, C. Jagadish, Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett. 14(9), 5206–5211 (2014)CrossRef
17.
Zurück zum Zitat M. De Luca, A. Polimeni, H.A. Fonseka, A.J. Meaney, P.C.M. Christianen, J.C. Maan, S. Paiman, H.H. Tan, F. Mura, C. Jagadish, M. Capizzi, Magneto-optical properties of wurtzite-phase InP nanowires. Nano Lett. 14(8), 4250–4256 (2014)CrossRef M. De Luca, A. Polimeni, H.A. Fonseka, A.J. Meaney, P.C.M. Christianen, J.C. Maan, S. Paiman, H.H. Tan, F. Mura, C. Jagadish, M. Capizzi, Magneto-optical properties of wurtzite-phase InP nanowires. Nano Lett. 14(8), 4250–4256 (2014)CrossRef
18.
Zurück zum Zitat D. Tedeschi, M. De Luca, A. Granados del Águila, Q. Gao, G. Ambrosio, M. Capizzi, H.H. Tan, P.C.M. Christianen, C. Jagadish, A. Polimeni, Value and anisotropy of the electron and hole mass in pure wurtzite InP nanowires. Nano Lett. 16(10), 6213–6221 (2016) D. Tedeschi, M. De Luca, A. Granados del Águila, Q. Gao, G. Ambrosio, M. Capizzi, H.H. Tan, P.C.M. Christianen, C. Jagadish, A. Polimeni, Value and anisotropy of the electron and hole mass in pure wurtzite InP nanowires. Nano Lett. 16(10), 6213–6221 (2016)
19.
Zurück zum Zitat M. De Luca, G. Lavenuta, A. Polimeni, S. Rubini, V. Grillo, F. Mura, A. Miriametro, M. Capizzi, F. Martelli, Excitonic recombination and absorption in InxGa1−xAs/GaAs heterostructure nanowires Phys. Rev. B 87(23), 235304 (2013)CrossRef M. De Luca, G. Lavenuta, A. Polimeni, S. Rubini, V. Grillo, F. Mura, A. Miriametro, M. Capizzi, F. Martelli, Excitonic recombination and absorption in InxGa1−xAs/GaAs heterostructure nanowires Phys. Rev. B 87(23), 235304 (2013)CrossRef
20.
Zurück zum Zitat F. Martelli, G. Priante, S. Rubini, Photoluminescence of GaAs nanowires at an energy larger than the zincblende band-gap: dependence on growth parameters. Semicond. Sci. And Tech. 30(5), 055020 (2015)CrossRef F. Martelli, G. Priante, S. Rubini, Photoluminescence of GaAs nanowires at an energy larger than the zincblende band-gap: dependence on growth parameters. Semicond. Sci. And Tech. 30(5), 055020 (2015)CrossRef
21.
Zurück zum Zitat J. Greil, S. Assali, Y. Isono, A. Belabbes, F. Bechstedt, F.O. Valega Mackenzie, A.Y. Silov, E.P.A.M.Bakkers,, J. E. M. Haverkort, Optical properties of strained Wurtzite gallium phosphide nanowires. Nano Lett. 16(6), 3703–3709 (2016) J. Greil, S. Assali, Y. Isono, A. Belabbes, F. Bechstedt, F.O. Valega Mackenzie, A.Y. Silov, E.P.A.M.Bakkers,, J. E. M. Haverkort, Optical properties of strained Wurtzite gallium phosphide nanowires. Nano Lett. 16(6), 3703–3709 (2016)
22.
Zurück zum Zitat M.B. Rota, A.S. Ameruddin, H.A. Fonseka, Q. Gao, F. Mura, A. Polimeni, A. Miriametro, H.H. Tan, C. Jagadish, M. Capizzi, Bandgap energy of Wurtzite InAs nanowires. Nano Lett. 16(8), 5197–5203 (2016)CrossRef M.B. Rota, A.S. Ameruddin, H.A. Fonseka, Q. Gao, F. Mura, A. Polimeni, A. Miriametro, H.H. Tan, C. Jagadish, M. Capizzi, Bandgap energy of Wurtzite InAs nanowires. Nano Lett. 16(8), 5197–5203 (2016)CrossRef
23.
Zurück zum Zitat A. Senichev, P. Corfdir, O. Brandt, M. Ramsteiner, S. Breuer, J. Schilling, L. Geelhaar, P. Werner, Electronic properties of wurtzite GaAs: a correlated structural, optical, and theoretical analysis of the same polytypic GaAs nanowire. Nano Res. 11(9), 4708 (2018)CrossRef A. Senichev, P. Corfdir, O. Brandt, M. Ramsteiner, S. Breuer, J. Schilling, L. Geelhaar, P. Werner, Electronic properties of wurtzite GaAs: a correlated structural, optical, and theoretical analysis of the same polytypic GaAs nanowire. Nano Res. 11(9), 4708 (2018)CrossRef
24.
Zurück zum Zitat R.A. Lewis, Y.-J. Wang, Magneto-optical far-infrared absorption spectroscopy of the hole states of indium phosphide. Phys. Rev. B 71(11), 115211 (2005)CrossRef R.A. Lewis, Y.-J. Wang, Magneto-optical far-infrared absorption spectroscopy of the hole states of indium phosphide. Phys. Rev. B 71(11), 115211 (2005)CrossRef
25.
Zurück zum Zitat S. Charbonneau, L.B. Allard, A.P. Roth, T. Sudersena Rao, Time-resolved photoluminescence studies of biexcitons in InP. Phys. Rev. B 47(20), 13918–13921 (1993)CrossRef S. Charbonneau, L.B. Allard, A.P. Roth, T. Sudersena Rao, Time-resolved photoluminescence studies of biexcitons in InP. Phys. Rev. B 47(20), 13918–13921 (1993)CrossRef
26.
Zurück zum Zitat E. Kubota, Y. Ohmori, K. Sugii, Electrical and optical properties of Mg-, Ca-, and Zn-doped InP crystals grown by the synthesis, solute diffusion technique. J. Appl. Phys. 55(10), 3779–3784 (1984)CrossRef E. Kubota, Y. Ohmori, K. Sugii, Electrical and optical properties of Mg-, Ca-, and Zn-doped InP crystals grown by the synthesis, solute diffusion technique. J. Appl. Phys. 55(10), 3779–3784 (1984)CrossRef
27.
Zurück zum Zitat E.G. Gadret, M.M. de Lima, J.R. Madureira, T. Chiaramonte, M.A. Cotta, F. Iikawa, A. Cantarero, Optical phonon modes of wurtzite InP. Appl. Phys. Lett. 102(12), 122101 (2013)CrossRef E.G. Gadret, M.M. de Lima, J.R. Madureira, T. Chiaramonte, M.A. Cotta, F. Iikawa, A. Cantarero, Optical phonon modes of wurtzite InP. Appl. Phys. Lett. 102(12), 122101 (2013)CrossRef
28.
Zurück zum Zitat S. Mukhopadhyay, D.A. Stewart, First-principles study of the phonon dispersion and dielectric properties of wurtzite InP: role of In 4d electrons. Phys. Rev. B 89(5), 054302 (2014)CrossRef S. Mukhopadhyay, D.A. Stewart, First-principles study of the phonon dispersion and dielectric properties of wurtzite InP: role of In 4d electrons. Phys. Rev. B 89(5), 054302 (2014)CrossRef
29.
Zurück zum Zitat K. Li, H. Sun, K.W. Hg, T.-T.D. Tran, R. Chen, C.J. Chang-Hasnain, Tailoring the optical characteristics of microsized InP Nanoneedles directly grown on silicon. Nano Lett. 14(1), 183–190 (2014)CrossRef K. Li, H. Sun, K.W. Hg, T.-T.D. Tran, R. Chen, C.J. Chang-Hasnain, Tailoring the optical characteristics of microsized InP Nanoneedles directly grown on silicon. Nano Lett. 14(1), 183–190 (2014)CrossRef
30.
Zurück zum Zitat J. Bao, D.C. Bell, F. Capasso, J.B. Wagner, T. Mårtensson, J. Trägårdh, L. Samuelson, Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 8(3), 836–841 (2008)CrossRef J. Bao, D.C. Bell, F. Capasso, J.B. Wagner, T. Mårtensson, J. Trägårdh, L. Samuelson, Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 8(3), 836–841 (2008)CrossRef
31.
Zurück zum Zitat K. Pemasiri, M. Montazeri, R. Gass, L.M. Smith, H.E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, X. Zhang, J. Zou, Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. Nano Lett. 9(2), 648–654 (2009)CrossRef K. Pemasiri, M. Montazeri, R. Gass, L.M. Smith, H.E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, X. Zhang, J. Zou, Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. Nano Lett. 9(2), 648–654 (2009)CrossRef
32.
Zurück zum Zitat L. Pavesi, F. Piazza, A. Rudra, J.F. Carlin, M. Ilegems, Temperature dependence of the InP band gap from a photoluminescence study Phys. Rev. B 44(16), 9052 (1991)CrossRef L. Pavesi, F. Piazza, A. Rudra, J.F. Carlin, M. Ilegems, Temperature dependence of the InP band gap from a photoluminescence study Phys. Rev. B 44(16), 9052 (1991)CrossRef
33.
Zurück zum Zitat T. Karin, X. Linpeng, M.M. Glazov, M.V. Durnev, E.L. Ivchenko, S. Harvey, A. Rai, A. Ludwig, A.D. Wieck,, K.-M.C. Fu, Giant permanent dipole moment of two-dimensional excitons bound to a single stacking fault. Phys. Rev. B 94(4) 041201(R) (2016) T. Karin, X. Linpeng, M.M. Glazov, M.V. Durnev, E.L. Ivchenko, S. Harvey, A. Rai, A. Ludwig, A.D. Wieck,, K.-M.C. Fu, Giant permanent dipole moment of two-dimensional excitons bound to a single stacking fault. Phys. Rev. B 94(4) 041201(R) (2016)
34.
Zurück zum Zitat R. Benzaquen, R. Leonelli, S. Charbonneau, Exciton-impurity interactions in high-purity InP. Phys. Rev. B 59(3), 1973–1985 (1999)CrossRef R. Benzaquen, R. Leonelli, S. Charbonneau, Exciton-impurity interactions in high-purity InP. Phys. Rev. B 59(3), 1973–1985 (1999)CrossRef
35.
Zurück zum Zitat E.S. Koteles, J. Lee, J.P. Salerno, M.O. Vassell, Elastic scattering of exciton polaritons by neutral impurities. Phys. Rev. Lett. 55(8), 867–870 (1985)CrossRef E.S. Koteles, J. Lee, J.P. Salerno, M.O. Vassell, Elastic scattering of exciton polaritons by neutral impurities. Phys. Rev. Lett. 55(8), 867–870 (1985)CrossRef
36.
Zurück zum Zitat M. Aghaeipour, N. Anttu, G. Nylund, L. Samuelson, S. Lehmann, M.-E. Pistol, Tunable absorption resonances in the ultraviolet for InP nanowire arrays. Opt. Express 22(23), 29204 (2014)CrossRef M. Aghaeipour, N. Anttu, G. Nylund, L. Samuelson, S. Lehmann, M.-E. Pistol, Tunable absorption resonances in the ultraviolet for InP nanowire arrays. Opt. Express 22(23), 29204 (2014)CrossRef
37.
Zurück zum Zitat E.G. Gadret, G.O. Dias, L.C.O. Dacal, M.M. de Lima, C.V.R.S. Ruffo, F. Iikawa, M.J.S.P. Brasil, T. Chiaramonte, M.A. Cotta, L.H.G. Tizei, D. Ugarte, A. Cantarero, Valence-band splitting energies in wurtzite InP nanowires: Photoluminescence spectroscopy andab initiocalculations. Phys. Rev. B 82(12), 125327 (2010)CrossRef E.G. Gadret, G.O. Dias, L.C.O. Dacal, M.M. de Lima, C.V.R.S. Ruffo, F. Iikawa, M.J.S.P. Brasil, T. Chiaramonte, M.A. Cotta, L.H.G. Tizei, D. Ugarte, A. Cantarero, Valence-band splitting energies in wurtzite InP nanowires: Photoluminescence spectroscopy andab initiocalculations. Phys. Rev. B 82(12), 125327 (2010)CrossRef
38.
Zurück zum Zitat S. Perera, K. Pemasiri, M.A. Fickenscher, H.E. Jackson, L.M. Smith, J. Yarrison-Rice, S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, Probing valence band structure in wurtzite InP nanowires using excitation spectroscopy. Appli. Phys. Lett. 97(2), 023106 (2010)CrossRef S. Perera, K. Pemasiri, M.A. Fickenscher, H.E. Jackson, L.M. Smith, J. Yarrison-Rice, S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, Probing valence band structure in wurtzite InP nanowires using excitation spectroscopy. Appli. Phys. Lett. 97(2), 023106 (2010)CrossRef
39.
Zurück zum Zitat A. Zilli, M. De Luca, D. Tedeschi, H.A. Fonseka, A. Miriametro, H.H. Tan, C. Jagadish, M. Capizzi, A. Polimeni, Temperature dependence of interband transitions in Wurtzite InP nanowires. ACS Nano 9(4), 4277–4287 (2015)CrossRef A. Zilli, M. De Luca, D. Tedeschi, H.A. Fonseka, A. Miriametro, H.H. Tan, C. Jagadish, M. Capizzi, A. Polimeni, Temperature dependence of interband transitions in Wurtzite InP nanowires. ACS Nano 9(4), 4277–4287 (2015)CrossRef
40.
Zurück zum Zitat F. Bechstedt, J. Belabbes, Structure, energetics, and electronic states of III–V compound polytypes. J. Phys. Cond. Matter 25(27), 273201 (2013) F. Bechstedt, J. Belabbes, Structure, energetics, and electronic states of III–V compound polytypes. J. Phys. Cond. Matter 25(27), 273201 (2013)
41.
Zurück zum Zitat J.L. Birman, Some selection rules for band-band transitions in Wurtzite structure. Phys Rev. 114(6), 1490–1492 (1959)CrossRef J.L. Birman, Some selection rules for band-band transitions in Wurtzite structure. Phys Rev. 114(6), 1490–1492 (1959)CrossRef
42.
Zurück zum Zitat P. Tronc, Y.E. Kitaev, G. Wang, M.F. Limonov, A.G. Panfilov,, G. Neu, Optical selection rules for hexagonal GaN. Phys. Stat. Sol. (b) 216(1), 599–603 (1999) P. Tronc, Y.E. Kitaev, G. Wang, M.F. Limonov, A.G. Panfilov,, G. Neu, Optical selection rules for hexagonal GaN. Phys. Stat. Sol. (b) 216(1), 599–603 (1999)
43.
Zurück zum Zitat H.E. Ruda, A. Shik, Polarization-sensitive optical phenomena in semiconducting and metallic nanowires Phys. Rev. B 72(15), 115308 (2005)CrossRef H.E. Ruda, A. Shik, Polarization-sensitive optical phenomena in semiconducting and metallic nanowires Phys. Rev. B 72(15), 115308 (2005)CrossRef
44.
Zurück zum Zitat M. De Luca, A. Zilli, A. Fonseka, S. Mokkapati, A. Miriametro, H. Tan, L. Smith, C. Jagadish, M. Capizzi, A. Polimeni, Polarized light absorption in Wurtzite InP nanowire ensembles. Nano Lett. 15(2), 998–1005 (2015)CrossRef M. De Luca, A. Zilli, A. Fonseka, S. Mokkapati, A. Miriametro, H. Tan, L. Smith, C. Jagadish, M. Capizzi, A. Polimeni, Polarized light absorption in Wurtzite InP nanowire ensembles. Nano Lett. 15(2), 998–1005 (2015)CrossRef
45.
Zurück zum Zitat M. De Luca, A. Polimeni, Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy. Appl. Phys. Rev. 4(4), 041102 (2017)CrossRef M. De Luca, A. Polimeni, Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy. Appl. Phys. Rev. 4(4), 041102 (2017)CrossRef
46.
Zurück zum Zitat A.J. Nozik, Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52, 193–231 (2001)CrossRef A.J. Nozik, Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52, 193–231 (2001)CrossRef
47.
Zurück zum Zitat R.T. Ross, A.J. Nozik, Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53(5), 3813–3818 (1982)CrossRef R.T. Ross, A.J. Nozik, Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53(5), 3813–3818 (1982)CrossRef
48.
Zurück zum Zitat G. Conibeer, S. Shrestha, S. Huang, R. Patterson, H. Xia, Y. Feng, P. Zhang, N. Gupta, M. Tayebjee, S. Smyth, Y. Liao, S. Lin, P. Wang, X. Dai, S. Chung, Hot carrier solar cell absorber prerequisites and candidate material systems. Sol. Energy Mater. Sol. Cells 135, 124–129 (2015)CrossRef G. Conibeer, S. Shrestha, S. Huang, R. Patterson, H. Xia, Y. Feng, P. Zhang, N. Gupta, M. Tayebjee, S. Smyth, Y. Liao, S. Lin, P. Wang, X. Dai, S. Chung, Hot carrier solar cell absorber prerequisites and candidate material systems. Sol. Energy Mater. Sol. Cells 135, 124–129 (2015)CrossRef
49.
Zurück zum Zitat K. Yoon, J.K. Hyun, J.G. Connell, I. Amit, Y. Rosenwaks, L.J. Lauhon, Barrier height measurement of metal contacts to Si nanowires using internal photoemission of hot carriers. Nano Lett. 13(12), 6183–6188 (2013)CrossRef K. Yoon, J.K. Hyun, J.G. Connell, I. Amit, Y. Rosenwaks, L.J. Lauhon, Barrier height measurement of metal contacts to Si nanowires using internal photoemission of hot carriers. Nano Lett. 13(12), 6183–6188 (2013)CrossRef
50.
Zurück zum Zitat Y. Yang, X. Peng, H.-S. Kim, T. Kim, S. Jeon, H.K. Kang, W. Choi, J. Song, Y.-J. Doh, D. Yu, Hot carrier trapping induced negative photoconductance in InAs nanowires toward novel nonvolatile memory. Nano Lett. 15(9), 5875–5882 (2015)CrossRef Y. Yang, X. Peng, H.-S. Kim, T. Kim, S. Jeon, H.K. Kang, W. Choi, J. Song, Y.-J. Doh, D. Yu, Hot carrier trapping induced negative photoconductance in InAs nanowires toward novel nonvolatile memory. Nano Lett. 15(9), 5875–5882 (2015)CrossRef
51.
Zurück zum Zitat P. Lautenschlager, M. Garriga, M. Cardona, Temperature dependence of the interband critical-point parameters of InP. Phys. Rev. B 36(9), 4813–4820 (1987)CrossRef P. Lautenschlager, M. Garriga, M. Cardona, Temperature dependence of the interband critical-point parameters of InP. Phys. Rev. B 36(9), 4813–4820 (1987)CrossRef
52.
Zurück zum Zitat E. Grilli, M. Guzzi, R. Zamboni, L. Pavesi, High-precision determination of the temperature dependence of the fundamental energy gap in gallium arsenide. Phys. Rev. B 45(4), 1638–1644 (1992)CrossRef E. Grilli, M. Guzzi, R. Zamboni, L. Pavesi, High-precision determination of the temperature dependence of the fundamental energy gap in gallium arsenide. Phys. Rev. B 45(4), 1638–1644 (1992)CrossRef
53.
Zurück zum Zitat R.J. Elliot, Intensity of optical absorption by excitons. Phys. Rev. 108(6), 1384–1389 (1957)CrossRef R.J. Elliot, Intensity of optical absorption by excitons. Phys. Rev. 108(6), 1384–1389 (1957)CrossRef
54.
Zurück zum Zitat H. Alawadhi, S. Tsoi, X. Lu, A.K. Ramdas, M. Grimsditch, M. Cardona, R. Lauck, Effect of temperature on isotopic mass dependence of excitonic band gaps in semiconductors: ZnO. Phys. Rev. B 75(20), 205207 (2007) H. Alawadhi, S. Tsoi, X. Lu, A.K. Ramdas, M. Grimsditch, M. Cardona, R. Lauck, Effect of temperature on isotopic mass dependence of excitonic band gaps in semiconductors: ZnO. Phys. Rev. B 75(20), 205207 (2007)
55.
Zurück zum Zitat W. Shan, T.J. Schmidt, X.H. Yang, S.J. Hwang, J.J. Song, B. Goldenberg, Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 66(8), 985–987 (1995)CrossRef W. Shan, T.J. Schmidt, X.H. Yang, S.J. Hwang, J.J. Song, B. Goldenberg, Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 66(8), 985–987 (1995)CrossRef
56.
Zurück zum Zitat A. Imada, S. Ozaki, S. Adachi, Photoreflectance spectroscopy of Wurtzite CdS. J. Appl. Phys. 92(4), 1793–1798 (2002)CrossRef A. Imada, S. Ozaki, S. Adachi, Photoreflectance spectroscopy of Wurtzite CdS. J. Appl. Phys. 92(4), 1793–1798 (2002)CrossRef
57.
Zurück zum Zitat S. Logothetidis, M. Cardona, P. Lautenschlager, M. Garriga, Temperature dependence of the dielectric function and the interband critical points of CdSe. Phys. Rev. B 34(4), 2458–2469 (1986)CrossRef S. Logothetidis, M. Cardona, P. Lautenschlager, M. Garriga, Temperature dependence of the dielectric function and the interband critical points of CdSe. Phys. Rev. B 34(4), 2458–2469 (1986)CrossRef
58.
Zurück zum Zitat F. Benkabou, P. Becker, M. Certier, H. Aourag, Structural and dynamical properties of zincblende GaN. Phys. Stat. Sol. (b) 209(2), 223–233 (1998) F. Benkabou, P. Becker, M. Certier, H. Aourag, Structural and dynamical properties of zincblende GaN. Phys. Stat. Sol. (b) 209(2), 223–233 (1998)
59.
Zurück zum Zitat D. Tedeschi, M. De Luca, H.A. Fonseka, Q. Gao, F. Mura, H.H. Tan, S. Rubini, F. Martelli, C. Jagadish, M. Capizzi, A. Polimeni, Long-lived hot carriers in III–V Nanowires. Nano Lett. 16(5), 3085–3093 (2016)CrossRef D. Tedeschi, M. De Luca, H.A. Fonseka, Q. Gao, F. Mura, H.H. Tan, S. Rubini, F. Martelli, C. Jagadish, M. Capizzi, A. Polimeni, Long-lived hot carriers in III–V Nanowires. Nano Lett. 16(5), 3085–3093 (2016)CrossRef
60.
Zurück zum Zitat M. Li, J. Fu, Q. Xu, T.C. Sum, Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mat. 31(47), 1802486 (2019)CrossRef M. Li, J. Fu, Q. Xu, T.C. Sum, Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mat. 31(47), 1802486 (2019)CrossRef
61.
Zurück zum Zitat S. Limpert, A. Burke, I.-J. Chen, N. Anttu, S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M.-E. Pistol, H. Linke, Bipolar Photothermoelectric effect across energy filters in single nanowires. Nano Lett. 17(7), 4055–4060 (2017)CrossRef S. Limpert, A. Burke, I.-J. Chen, N. Anttu, S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M.-E. Pistol, H. Linke, Bipolar Photothermoelectric effect across energy filters in single nanowires. Nano Lett. 17(7), 4055–4060 (2017)CrossRef
62.
Zurück zum Zitat C.T. Bui, R. Xie, M. Zheng, Q. Zhang, C.H. Sow, B. Li, J.T.L. Thong, Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects. Small 8(5), 738–745 (2012)CrossRef C.T. Bui, R. Xie, M. Zheng, Q. Zhang, C.H. Sow, B. Li, J.T.L. Thong, Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects. Small 8(5), 738–745 (2012)CrossRef
63.
Zurück zum Zitat M.Y. Swinkels, M.R. van Delft, D.S. Oliveira, A. Cavalli, I. Zardo, R.W. van der Heijden, E.P.A.M. Bakkers, Diameter dependence of the thermal conductivity of InAs nanowires. Nanotechnology 26(38), 385401 (2015)CrossRef M.Y. Swinkels, M.R. van Delft, D.S. Oliveira, A. Cavalli, I. Zardo, R.W. van der Heijden, E.P.A.M. Bakkers, Diameter dependence of the thermal conductivity of InAs nanowires. Nanotechnology 26(38), 385401 (2015)CrossRef
64.
Zurück zum Zitat A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chem. Rev. 110(1), 527–546 (2010)CrossRef A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chem. Rev. 110(1), 527–546 (2010)CrossRef
65.
Zurück zum Zitat X. Lü, J.H. Chu, W.Z. Shen, Modification of the lattice thermal conductivity in semiconductor rectangular nanowires. J. Appl. Phys. 93(2), 1219–1229 (2003)CrossRef X. Lü, J.H. Chu, W.Z. Shen, Modification of the lattice thermal conductivity in semiconductor rectangular nanowires. J. Appl. Phys. 93(2), 1219–1229 (2003)CrossRef
66.
Zurück zum Zitat P. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102(12), 125503 (2009)CrossRef P. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102(12), 125503 (2009)CrossRef
Metadaten
Titel
Photoluminescence Spectroscopy Applied to Semiconducting Nanowires: A Valuable Probe for Assessing Lattice Defects, Crystal Structures, and Carriers’ Temperature
verfasst von
Davide Tedeschi
Marta De Luca
Antonio Polimeni
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9050-4_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.