Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Photonic Network Communications 1/2021

05.09.2020 | Original Paper

Photonic crystal add–drop filter: a review on principles and applications

verfasst von: Marjan Bazian

Erschienen in: Photonic Network Communications | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Add–drop filter (ADF) is a key component in optical integrated circuits that can be used in all-optical communication networks and wavelength division multiplexing (WDM) systems. The quality factor, coupling efficiency, transmission efficiency and coupling length are important parameters in add–drop filters. Photonic crystal (PC) optical devices have become popular among researchers because their structure is suitable to embed into optical circuits. This paper covers a comprehensive review of the principle structure of ADF, coupled mode theory (CMT), types and recent applications in WDMs, accelerometer and bio/chemical sensors. Although there are some different categories of photonic crystal ring resonator-based ADF in general, all of them can be divided into photonic to two class of non-circular and circular. This article is reported a comprehensive study about ADF and improvement of these ADF.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Tavousi, A., Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt. Commun. 429, 166–174 (2018) Tavousi, A., Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt. Commun. 429, 166–174 (2018)
2.
Zurück zum Zitat Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J., Lipson, M.: 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007) Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J., Lipson, M.: 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007)
3.
Zurück zum Zitat Nishihara, H., Haruna, M., Suhara, T.: Optical integrated circuits. McGraw-Hill, New York (1989) Nishihara, H., Haruna, M., Suhara, T.: Optical integrated circuits. McGraw-Hill, New York (1989)
4.
Zurück zum Zitat D’souza, N.M., Mathew, V.: Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016) D’souza, N.M., Mathew, V.: Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)
5.
Zurück zum Zitat Bie, Y.-Q., Grosso, G., Heuck, M., Furchi, M.M., Cao, Y., Zheng, J., Bunandar, D., Navarro-Moratalla, E., Zhou, L., Efetov, D.K.: A MoTe 2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124 (2017) Bie, Y.-Q., Grosso, G., Heuck, M., Furchi, M.M., Cao, Y., Zheng, J., Bunandar, D., Navarro-Moratalla, E., Zhou, L., Efetov, D.K.: A MoTe 2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124 (2017)
6.
Zurück zum Zitat Lee, B.G., Rylyakov, A.V., Green, W.M.J., Assefa, S., Baks, C.W., Rimolo-Donadio, R., Kuchta, D.M., Khater, M.H., Barwicz, T., Reinholm, C.: Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits. J. Light. Technol. 32, 743–751 (2014) Lee, B.G., Rylyakov, A.V., Green, W.M.J., Assefa, S., Baks, C.W., Rimolo-Donadio, R., Kuchta, D.M., Khater, M.H., Barwicz, T., Reinholm, C.: Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits. J. Light. Technol. 32, 743–751 (2014)
7.
Zurück zum Zitat Fang, Y., Sun, M.: Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4, e294 (2015) Fang, Y., Sun, M.: Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4, e294 (2015)
8.
Zurück zum Zitat Robinson, S., Nakkeeran, R.: Performance evaluation of PCRR based add drop filter with different rod shapes. J. Microw. Optoelectron. Electromagn. Appl. 11, 26–38 (2012) Robinson, S., Nakkeeran, R.: Performance evaluation of PCRR based add drop filter with different rod shapes. J. Microw. Optoelectron. Electromagn. Appl. 11, 26–38 (2012)
9.
Zurück zum Zitat Safavi-Naeini, A.H., Hill, J.T., Meenehan, S., Chan, J., Gröblacher, S., Painter, O.: Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Phys. Rev. Lett. 112, 153603 (2014) Safavi-Naeini, A.H., Hill, J.T., Meenehan, S., Chan, J., Gröblacher, S., Painter, O.: Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Phys. Rev. Lett. 112, 153603 (2014)
10.
Zurück zum Zitat Wang, P., Ren, C., Han, P., Feng, S.: Multi-channel unidirectional and bidirectional wavelength filters in two dimensional photonic crystals. Opt. Mater. (Amst) 46, 195–202 (2015) Wang, P., Ren, C., Han, P., Feng, S.: Multi-channel unidirectional and bidirectional wavelength filters in two dimensional photonic crystals. Opt. Mater. (Amst) 46, 195–202 (2015)
11.
Zurück zum Zitat Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987) Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)
12.
Zurück zum Zitat Busch, K., John, S.: Photonic band gap formation in certain self-organizing systems. Phys. Rev. E. 58, 3896 (1998) Busch, K., John, S.: Photonic band gap formation in certain self-organizing systems. Phys. Rev. E. 58, 3896 (1998)
13.
Zurück zum Zitat Dutton, H.J.R.: Understanding optical communications. Prentice Hall PTR, New Jersey (1998) Dutton, H.J.R.: Understanding optical communications. Prentice Hall PTR, New Jersey (1998)
14.
Zurück zum Zitat Wu, Z., Xie, K., Yang, H.: Band gap properties of two-dimensional photonic crystals with rhombic lattice. Opt. J. Light Electron Opt. 123, 534–536 (2012) Wu, Z., Xie, K., Yang, H.: Band gap properties of two-dimensional photonic crystals with rhombic lattice. Opt. J. Light Electron Opt. 123, 534–536 (2012)
15.
Zurück zum Zitat Mehdizadeh, F., Alipour-Banaei, H.: Bandgap management in two-dimensional photonic crystal thue-morse structures. J. Opt. Commun. 34, 61–65 (2013) Mehdizadeh, F., Alipour-Banaei, H.: Bandgap management in two-dimensional photonic crystal thue-morse structures. J. Opt. Commun. 34, 61–65 (2013)
16.
Zurück zum Zitat Rezaei, B., Kalafi, M.: Engineering absolute band gap in anisotropic hexagonal photonic crystals. Opt. Commun. 266, 159–163 (2006) Rezaei, B., Kalafi, M.: Engineering absolute band gap in anisotropic hexagonal photonic crystals. Opt. Commun. 266, 159–163 (2006)
17.
Zurück zum Zitat Liu, W.-L., Liou, Y.-Y., Wei, J.-C., Yang, T.-J.: Band gap studies of 2D photonic crystals with hybrid scatterers. Phys. B Condens. Matter. 404, 4237–4242 (2009) Liu, W.-L., Liou, Y.-Y., Wei, J.-C., Yang, T.-J.: Band gap studies of 2D photonic crystals with hybrid scatterers. Phys. B Condens. Matter. 404, 4237–4242 (2009)
18.
Zurück zum Zitat Bykov, V.P.: Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861 (1975) Bykov, V.P.: Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861 (1975)
19.
Zurück zum Zitat Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018) Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018)
20.
Zurück zum Zitat Elsayed, H.A.: A multi-channel optical filter by means of one dimensional n doped semiconductor dielectric photonic crystals. Mater. Chem. Phys. 216, 191–196 (2018) Elsayed, H.A.: A multi-channel optical filter by means of one dimensional n doped semiconductor dielectric photonic crystals. Mater. Chem. Phys. 216, 191–196 (2018)
21.
Zurück zum Zitat Divya, J., Selvendran, S., Raja, A.S.: Two-dimensional photonic crystal ring resonator-based channel drop filter for CWDM application. Photonic Netw. Commun. 35, 353–363 (2018) Divya, J., Selvendran, S., Raja, A.S.: Two-dimensional photonic crystal ring resonator-based channel drop filter for CWDM application. Photonic Netw. Commun. 35, 353–363 (2018)
22.
Zurück zum Zitat Venkatachalam, K., Kumar, D.S., Robinson, S.: Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer. Photonic Netw. Commun. 34, 100–110 (2017) Venkatachalam, K., Kumar, D.S., Robinson, S.: Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer. Photonic Netw. Commun. 34, 100–110 (2017)
23.
Zurück zum Zitat Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: All-optical 6-and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photonic Netw. Commun. 34, 248–257 (2017) Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: All-optical 6-and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photonic Netw. Commun. 34, 248–257 (2017)
24.
Zurück zum Zitat Balaji, V.R., Murugan, M., Robinson, S., Nakkeeran, R.: Integrated 25 GHz and 50 GHz spectral line width dense wavelength division demultiplexer on single photonic crystal chip. Opto Electron. Rev. 26, 285–295 (2018) Balaji, V.R., Murugan, M., Robinson, S., Nakkeeran, R.: Integrated 25 GHz and 50 GHz spectral line width dense wavelength division demultiplexer on single photonic crystal chip. Opto Electron. Rev. 26, 285–295 (2018)
25.
Zurück zum Zitat Gandhi, B., Shukla, A.K., Pandey, G.N.: Design of 1× 4 All Optical Splitter Based on 2D Photonic Crystal. In: Advances in Optical Science and Engineering. pp. 551–557. Springer (2017) Gandhi, B., Shukla, A.K., Pandey, G.N.: Design of 1× 4 All Optical Splitter Based on 2D Photonic Crystal. In: Advances in Optical Science and Engineering. pp. 551–557. Springer (2017)
26.
Zurück zum Zitat Naghizade, S., Mohammadi, S.: Design and engineering of dispersion and loss in photonic crystal fiber 1× 4 power splitter (PCFPS) based on hole size alteration and optofluidic infiltration. Opt. Quantum Electron. 51, 17 (2019) Naghizade, S., Mohammadi, S.: Design and engineering of dispersion and loss in photonic crystal fiber 1× 4 power splitter (PCFPS) based on hole size alteration and optofluidic infiltration. Opt. Quantum Electron. 51, 17 (2019)
27.
Zurück zum Zitat Arunkumar, R., Suganya, T., Robinson, S.: Design and analysis of photonic crystal elliptical ring resonator based pressure sensor. Int. J. Photonics Opt. Technol. 3, 30–33 (2017) Arunkumar, R., Suganya, T., Robinson, S.: Design and analysis of photonic crystal elliptical ring resonator based pressure sensor. Int. J. Photonics Opt. Technol. 3, 30–33 (2017)
28.
Zurück zum Zitat Shanthi, K.V., Robinson, S.: Two-dimensional photonic crystal based sensor for pressure sensing. Photonic Sens. 4, 248–253 (2014) Shanthi, K.V., Robinson, S.: Two-dimensional photonic crystal based sensor for pressure sensing. Photonic Sens. 4, 248–253 (2014)
29.
Zurück zum Zitat Liu, Y., Salemink, H.W.M.: Sensitive all-optical channel-drop sensor in photonic crystals. J. Light. Technol. 33, 3672–3678 (2015) Liu, Y., Salemink, H.W.M.: Sensitive all-optical channel-drop sensor in photonic crystals. J. Light. Technol. 33, 3672–3678 (2015)
30.
Zurück zum Zitat Kurosaki, H., Koshiishi, H., Suzuki, T., Tsuchiya, K.: Development of tunable imaging spectro-polarimeter for remote sensing. Adv. Space Res. 32, 2141–2146 (2003) Kurosaki, H., Koshiishi, H., Suzuki, T., Tsuchiya, K.: Development of tunable imaging spectro-polarimeter for remote sensing. Adv. Space Res. 32, 2141–2146 (2003)
31.
Zurück zum Zitat Balaji, V.R., Murugan, M., Robinson, S.: Optimization of DWDM demultiplexer using regression analysis. J. Nanomater.  2016 (2016) Balaji, V.R., Murugan, M., Robinson, S.: Optimization of DWDM demultiplexer using regression analysis. J. Nanomater.  2016 (2016)
32.
Zurück zum Zitat Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Opt. J. Light Electron Opt. 123, 167–170 (2012) Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Opt. J. Light Electron Opt. 123, 167–170 (2012)
33.
Zurück zum Zitat Zhang, J., Chai, H., Yu, Z., Cheng, X., Ye, H., Liu, Y.: Asymmetric light transmission based on coupling between photonic crystal waveguides and L1/L3 cavity. J. Mod. Opt. 64, 1626–1631 (2017) Zhang, J., Chai, H., Yu, Z., Cheng, X., Ye, H., Liu, Y.: Asymmetric light transmission based on coupling between photonic crystal waveguides and L1/L3 cavity. J. Mod. Opt. 64, 1626–1631 (2017)
34.
Zurück zum Zitat Zhang, J., Liu, H., Ding, Y., Wang, Y.: A novel photonic crystal ring resonator configuration for add/drop filtering. Photonics Nanostructures Fundam. Appl. 30, 14–19 (2018) Zhang, J., Liu, H., Ding, Y., Wang, Y.: A novel photonic crystal ring resonator configuration for add/drop filtering. Photonics Nanostructures Fundam. Appl. 30, 14–19 (2018)
35.
Zurück zum Zitat Kewitsch, A.S., Rakuljic, G.A., Willems, P.A., Yariv, A.: All-fiber zero-insertion-loss add–drop filter for wavelength-division multiplexing. Opt. Lett. 23, 106–108 (1998) Kewitsch, A.S., Rakuljic, G.A., Willems, P.A., Yariv, A.: All-fiber zero-insertion-loss add–drop filter for wavelength-division multiplexing. Opt. Lett. 23, 106–108 (1998)
37.
Zurück zum Zitat Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct  8, 14–22 (2010) Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct  8, 14–22 (2010)
38.
Zurück zum Zitat Siraji, A.A., Zhao, Y.: High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors. Opt. Lett. 40, 1508–1511 (2015) Siraji, A.A., Zhao, Y.: High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors. Opt. Lett. 40, 1508–1511 (2015)
39.
Zurück zum Zitat Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Little, B.E., Haus, H.A.: U.S. Patent No. 6,101,300. Washington, DC: U.S. Patent and Trademark Office (2000) Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Little, B.E., Haus, H.A.: U.S. Patent No. 6,101,300. Washington, DC: U.S. Patent and Trademark Office (2000)
40.
Zurück zum Zitat Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Channel drop filters in photonic crystals. Opt. Express 3, 4–11 (1998) Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Channel drop filters in photonic crystals. Opt. Express 3, 4–11 (1998)
41.
Zurück zum Zitat Derakhshan, M., Naseri, A., Ghazizadeh, M., Talebzadeh, R.: Simulant designing of an ultra-compact AND, OR logical gates based on two-dimensional photonic crystal waveguides. Photonic Netw. Commun. 36, 338–343 (2018) Derakhshan, M., Naseri, A., Ghazizadeh, M., Talebzadeh, R.: Simulant designing of an ultra-compact AND, OR logical gates based on two-dimensional photonic crystal waveguides. Photonic Netw. Commun. 36, 338–343 (2018)
42.
Zurück zum Zitat Dutta, H.S., Goyal, A.K., Srivastava, V., Pal, S.: Coupling light in photonic crystal waveguides: a review. Photonics Nanostructures Fundam. Appl. 20, 41–58 (2016) Dutta, H.S., Goyal, A.K., Srivastava, V., Pal, S.: Coupling light in photonic crystal waveguides: a review. Photonics Nanostructures Fundam. Appl. 20, 41–58 (2016)
43.
Zurück zum Zitat Fan, S., Joannopoulos, J.D.: Photonic crystals: towards large-scale integration of optical and optoelectronic circuits. Opt. Photonics News 11, 28–33 (2000) Fan, S., Joannopoulos, J.D.: Photonic crystals: towards large-scale integration of optical and optoelectronic circuits. Opt. Photonics News 11, 28–33 (2000)
44.
Zurück zum Zitat Abbaslou, S., Gatdula, R., Lu, M., Stein, A., Soref, R.A., Jiang, W.: High-spectral-contrast symmetric modes in photonic crystal dual nanobeam resonators. IEEE Photonics Technol. Lett. 28, 2137–2140 (2016) Abbaslou, S., Gatdula, R., Lu, M., Stein, A., Soref, R.A., Jiang, W.: High-spectral-contrast symmetric modes in photonic crystal dual nanobeam resonators. IEEE Photonics Technol. Lett. 28, 2137–2140 (2016)
45.
Zurück zum Zitat Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Channel drop tunneling through localized states. Phys. Rev. Lett. 80, 960 (1998) Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Channel drop tunneling through localized states. Phys. Rev. Lett. 80, 960 (1998)
46.
Zurück zum Zitat Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Loss-induced on/off switching in a channel add/drop filter. Phys. Rev. B. 64, 245302 (2001) Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Loss-induced on/off switching in a channel add/drop filter. Phys. Rev. B. 64, 245302 (2001)
47.
Zurück zum Zitat Yi-Nan, Z., Ke-Zheng, L., Xue-Hua, W., Chong-Jun, J.: A compact in-plane photonic crystal channel drop filter. Chin. Phys. B. 20, 74210 (2011) Yi-Nan, Z., Ke-Zheng, L., Xue-Hua, W., Chong-Jun, J.: A compact in-plane photonic crystal channel drop filter. Chin. Phys. B. 20, 74210 (2011)
48.
Zurück zum Zitat Qiu, M.: Ultra-compact optical filter in two-dimensional photonic crystal. Electron. Lett. 40, 539–540 (2004) Qiu, M.: Ultra-compact optical filter in two-dimensional photonic crystal. Electron. Lett. 40, 539–540 (2004)
49.
Zurück zum Zitat Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng. 52, 60901 (2013) Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng. 52, 60901 (2013)
50.
Zurück zum Zitat Villeneuve, P.R., Fan, S., Joannopoulos, J.D.: Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency. Phys. Rev. B. 54, 7837 (1996) Villeneuve, P.R., Fan, S., Joannopoulos, J.D.: Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency. Phys. Rev. B. 54, 7837 (1996)
51.
Zurück zum Zitat Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Khan, M.J., Manolatou, C., Haus, H.A.: Theoretical analysis of channel drop tunneling processes. Phys. Rev. B 59, 15882 (1999) Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Khan, M.J., Manolatou, C., Haus, H.A.: Theoretical analysis of channel drop tunneling processes. Phys. Rev. B 59, 15882 (1999)
52.
Zurück zum Zitat Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express  15, 1823–1831 (2007) Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express  15, 1823–1831 (2007)
53.
Zurück zum Zitat Wang, Z., Fan, S.: Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator. Photonics Nanostructures Fundam. Appl. 4, 132–140 (2006) Wang, Z., Fan, S.: Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator. Photonics Nanostructures Fundam. Appl. 4, 132–140 (2006)
54.
Zurück zum Zitat Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008) Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008)
55.
Zurück zum Zitat Mirjalili, S.M., Merikhi, B., Mirjalili, S.Z., Zoghi, M., Mirjalili, S.: Multi-objective versus single-objective optimization frameworks for designing photonic crystal filters. Appl. Opt. 56, 9444–9451 (2017) Mirjalili, S.M., Merikhi, B., Mirjalili, S.Z., Zoghi, M., Mirjalili, S.: Multi-objective versus single-objective optimization frameworks for designing photonic crystal filters. Appl. Opt. 56, 9444–9451 (2017)
56.
Zurück zum Zitat Safdari, M.J., Mirjalili, S.M., Bianucci, P., Zhang, X.: Multi-objective optimization framework for designing photonic crystal sensors. Appl. Opt. 57, 1950–1957 (2018) Safdari, M.J., Mirjalili, S.M., Bianucci, P., Zhang, X.: Multi-objective optimization framework for designing photonic crystal sensors. Appl. Opt. 57, 1950–1957 (2018)
57.
Zurück zum Zitat Mirjalili, S.M., Mirjalili, S.Z.: Single-objective optimization framework for designing photonic crystal filters. Neural. Comput. Appl.  28, 1463–1469 (2017) Mirjalili, S.M., Mirjalili, S.Z.: Single-objective optimization framework for designing photonic crystal filters. Neural. Comput. Appl.  28, 1463–1469 (2017)
58.
Zurück zum Zitat Mirjalili, S.M.: SoMIR framework for designing high-NDBP photonic crystal waveguides. Appl. Opt. 53, 3945–3953 (2014) Mirjalili, S.M.: SoMIR framework for designing high-NDBP photonic crystal waveguides. Appl. Opt. 53, 3945–3953 (2014)
59.
Zurück zum Zitat Mirjalili, S.M., Mirjalili, S., Lewis, A.: A novel multi-objective optimization framework for designing photonic crystal waveguides. IEEE Photonics Technol. Lett. 26, 146–149 (2014) Mirjalili, S.M., Mirjalili, S., Lewis, A.: A novel multi-objective optimization framework for designing photonic crystal waveguides. IEEE Photonics Technol. Lett. 26, 146–149 (2014)
60.
Zurück zum Zitat Mirjalili, S.M., Mirjalili, S.: Oval-shaped-hole photonic crystal waveguide design by MoMIR framework. IEEE Photonics Technol. Lett. 26, 2446–2449 (2014) Mirjalili, S.M., Mirjalili, S.: Oval-shaped-hole photonic crystal waveguide design by MoMIR framework. IEEE Photonics Technol. Lett. 26, 2446–2449 (2014)
61.
Zurück zum Zitat Mirjalili, S.M., Mirjalili, S.Z.: Asymmetric oval-shaped-hole photonic crystal waveguide design by artificial intelligence optimizers. IEEE J. Sel. Top. Quantum Electron. 22, 4900407 (2016) Mirjalili, S.M., Mirjalili, S.Z.: Asymmetric oval-shaped-hole photonic crystal waveguide design by artificial intelligence optimizers. IEEE J. Sel. Top. Quantum Electron. 22, 4900407 (2016)
62.
Zurück zum Zitat Mirjalili, S.M., Mirjalili, S., Mirjalili, S.Z.: How to design photonic crystal LEDs with artificial intelligence techniques. Electron. Lett. 51, 1437–1439 (2015) Mirjalili, S.M., Mirjalili, S., Mirjalili, S.Z.: How to design photonic crystal LEDs with artificial intelligence techniques. Electron. Lett. 51, 1437–1439 (2015)
63.
Zurück zum Zitat Saremi, S., Mirjalili, S.M., Mirjalili, S.: Unit cell topology optimization of line defect photonic crystal waveguide. Procedia Technol. 12, 174–179 (2014) Saremi, S., Mirjalili, S.M., Mirjalili, S.: Unit cell topology optimization of line defect photonic crystal waveguide. Procedia Technol. 12, 174–179 (2014)
64.
Zurück zum Zitat Djavid, M., Mirtaheri, S.A., Abrishamian, M.S.: Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. JOSA B. 26, 849–853 (2009) Djavid, M., Mirtaheri, S.A., Abrishamian, M.S.: Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. JOSA B. 26, 849–853 (2009)
65.
Zurück zum Zitat Jiang, L., Wu, H., Jia, W., Li, X.: Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm. Opt. J. Light Electron Opt. 124, 1721–1725 (2013) Jiang, L., Wu, H., Jia, W., Li, X.: Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm. Opt. J. Light Electron Opt. 124, 1721–1725 (2013)
66.
Zurück zum Zitat Fasihi, K., Mohammadnejad, S.: Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback. Opt. Express 17, 8983–8997 (2009) Fasihi, K., Mohammadnejad, S.: Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback. Opt. Express 17, 8983–8997 (2009)
67.
Zurück zum Zitat Fasihi, K.: High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Light. Technol. 32, 3126–3131 (2014) Fasihi, K.: High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Light. Technol. 32, 3126–3131 (2014)
68.
Zurück zum Zitat Fasihi, K.: Photonic crystal wavelength-selective attenuators: design and modeling. Photonics Nanostructures Fundam. Appl. 10, 470–477 (2012) Fasihi, K.: Photonic crystal wavelength-selective attenuators: design and modeling. Photonics Nanostructures Fundam. Appl. 10, 470–477 (2012)
69.
Zurück zum Zitat Karalis, A., Joannopoulos, J.D.: Temporal coupled-mode theory model for resonant near-field thermophotovoltaics. Appl. Phys. Lett. 107, 141108 (2015) Karalis, A., Joannopoulos, J.D.: Temporal coupled-mode theory model for resonant near-field thermophotovoltaics. Appl. Phys. Lett. 107, 141108 (2015)
70.
Zurück zum Zitat Zhuang, Y., Ji, K., Zhou, W., Chen, H.: Design of a DWDM multi/demultiplexer based on 2-D photonic crystals. IEEE Photonics Technol. Lett. 28, 1669–1672 (2016) Zhuang, Y., Ji, K., Zhou, W., Chen, H.: Design of a DWDM multi/demultiplexer based on 2-D photonic crystals. IEEE Photonics Technol. Lett. 28, 1669–1672 (2016)
71.
Zurück zum Zitat Yu, F., Wang, Y., Wang, Z., Zheng, Q., Zhou, M., Guo, D., Ding, X., Xu, X., Wang, L., Chen, H.: Temporal coupled-mode theory and the combined effect of dual orthogonal resonant modes in microstrip bandpass filters. IEEE Trans. Microw. Theory Tech. 63, 403–413 (2015) Yu, F., Wang, Y., Wang, Z., Zheng, Q., Zhou, M., Guo, D., Ding, X., Xu, X., Wang, L., Chen, H.: Temporal coupled-mode theory and the combined effect of dual orthogonal resonant modes in microstrip bandpass filters. IEEE Trans. Microw. Theory Tech. 63, 403–413 (2015)
72.
Zurück zum Zitat Saleh, B.E.A., Teich, M.C., Saleh, B.E.: Fundamentals of photonics. Wiley, New York (1991) Saleh, B.E.A., Teich, M.C., Saleh, B.E.: Fundamentals of photonics. Wiley, New York (1991)
73.
Zurück zum Zitat Joannopoulos, J.J.D., Johnson, S., Winn, J.N.J., Meade, R.R.D.: Photonic crystals: molding the flow of light (2008) Joannopoulos, J.J.D., Johnson, S., Winn, J.N.J., Meade, R.R.D.: Photonic crystals: molding the flow of light (2008)
74.
Zurück zum Zitat Kanamori, Y., Takahashi, K., Hane, K.: An ultrasmall wavelength-selective channel drop switch using a nanomechanical photonic crystal nanocavity. Appl. Phys. Lett. 95, 171911 (2009) Kanamori, Y., Takahashi, K., Hane, K.: An ultrasmall wavelength-selective channel drop switch using a nanomechanical photonic crystal nanocavity. Appl. Phys. Lett. 95, 171911 (2009)
75.
Zurück zum Zitat Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: T-shaped channel-drop filters using photonic crystal ring resonators. Phys. E Low Dimensional Syst. Nanostructures 40, 3151–3154 (2008) Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: T-shaped channel-drop filters using photonic crystal ring resonators. Phys. E Low Dimensional Syst. Nanostructures 40, 3151–3154 (2008)
76.
Zurück zum Zitat Rabus, D.G.: Ring resonators: theory and modeling. In: Integrated Ring Resonators: The Compendium, pp. 3–40 (2007) Rabus, D.G.: Ring resonators: theory and modeling. In: Integrated Ring Resonators: The Compendium, pp. 3–40 (2007)
77.
Zurück zum Zitat Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012) Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)
78.
Zurück zum Zitat Rezaee, S., Zavvari, M., Alipour-Banaei, H.: A novel optical filter based on H-shape photonic crystal ring resonators. Opt. J. Light Electron Opt. 126, 2535–2538 (2015) Rezaee, S., Zavvari, M., Alipour-Banaei, H.: A novel optical filter based on H-shape photonic crystal ring resonators. Opt. J. Light Electron Opt. 126, 2535–2538 (2015)
79.
Zurück zum Zitat Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low Dimens. Syst. Nanostructures 87, 77–83 (2017) Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low Dimens. Syst. Nanostructures 87, 77–83 (2017)
80.
Zurück zum Zitat Xu, H., Zhong, R., Wang, X., Huang, X.: Dual-wavelength filters based on two-dimensional photonic crystal degenerate modes with a ring dielectric rod inside the defect cavity. Appl. Opt. 54, 4534–4541 (2015) Xu, H., Zhong, R., Wang, X., Huang, X.: Dual-wavelength filters based on two-dimensional photonic crystal degenerate modes with a ring dielectric rod inside the defect cavity. Appl. Opt. 54, 4534–4541 (2015)
81.
Zurück zum Zitat Chen, C.-P., Kamiji, Y., Oda, J., Nagaoka, N., Anada, T., Takeda, S.: A novel bandpass filter using higher-order degenerate modes of planar photonic crystal microcavity in terahertz regime. In: Microwave Integrated Circuits Conference (EuMIC), 2012 7th European. pp. 806–809. IEEE (2012) Chen, C.-P., Kamiji, Y., Oda, J., Nagaoka, N., Anada, T., Takeda, S.: A novel bandpass filter using higher-order degenerate modes of planar photonic crystal microcavity in terahertz regime. In: Microwave Integrated Circuits Conference (EuMIC), 2012 7th European. pp. 806–809. IEEE (2012)
83.
Zurück zum Zitat Woltman, S.J., Jay, G.D., Crawford, G.P.: Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007) Woltman, S.J., Jay, G.D., Crawford, G.P.: Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007)
84.
Zurück zum Zitat Gat, N.: Imaging spectroscopy using tunable filters: a review. In: Wavelet Applications VII. pp. 50–65. International Society for Optics and Photonics (2000) Gat, N.: Imaging spectroscopy using tunable filters: a review. In: Wavelet Applications VII. pp. 50–65. International Society for Optics and Photonics (2000)
85.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low Dimens. Syst. Nanostructures 56, 211–215 (2014) Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low Dimens. Syst. Nanostructures 56, 211–215 (2014)
86.
Zurück zum Zitat Jiang, J., Qiang, Z., Zhang, H., Zheng, Y., Qiu, Y.: A high-drop hole-type photonic crystal add-drop filter. Optoelectron. Lett. 10, 34–37 (2014) Jiang, J., Qiang, Z., Zhang, H., Zheng, Y., Qiu, Y.: A high-drop hole-type photonic crystal add-drop filter. Optoelectron. Lett. 10, 34–37 (2014)
87.
Zurück zum Zitat Almasian, M.R., Abedi, K.: Performance improvement of wavelength division multiplexing based on photonic crystal ring resonator. Opt. J. Light Electron Opt. 126, 2612–2615 (2015) Almasian, M.R., Abedi, K.: Performance improvement of wavelength division multiplexing based on photonic crystal ring resonator. Opt. J. Light Electron Opt. 126, 2612–2615 (2015)
89.
Zurück zum Zitat Robinson, S., Nakkeeran, R.: Investigation on parameters affecting the performance of two dimensional photonic crystal based bandpass filter. Opt. Quantum Electron. 43, 69–82 (2012) Robinson, S., Nakkeeran, R.: Investigation on parameters affecting the performance of two dimensional photonic crystal based bandpass filter. Opt. Quantum Electron. 43, 69–82 (2012)
90.
Zurück zum Zitat Mahmoud, M.Y., Bassou, G., de Fornel, F., Taalbi, A.: Channel drop filter for CWDM systems. Opt. Commun. 306, 179–184 (2013) Mahmoud, M.Y., Bassou, G., de Fornel, F., Taalbi, A.: Channel drop filter for CWDM systems. Opt. Commun. 306, 179–184 (2013)
91.
Zurück zum Zitat Ma, Z., Ogusu, K.: Channel drop filters using photonic crystal Fabry-Perot resonators. Opt. Commun. 284, 1192–1196 (2011) Ma, Z., Ogusu, K.: Channel drop filters using photonic crystal Fabry-Perot resonators. Opt. Commun. 284, 1192–1196 (2011)
92.
Zurück zum Zitat Almasian, M.R., Abedi, K.: A proposal for optical WDM using embedded photonic crystal ring resonator with distributed coupling. Phys. E Low Dimens. Syst. Nanostructures 79, 173–179 (2016) Almasian, M.R., Abedi, K.: A proposal for optical WDM using embedded photonic crystal ring resonator with distributed coupling. Phys. E Low Dimens. Syst. Nanostructures 79, 173–179 (2016)
93.
Zurück zum Zitat Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filters based on fractal structures. Phys. E Low Dimens. Syst. Nanostructures 63, 304–310 (2014) Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filters based on fractal structures. Phys. E Low Dimens. Syst. Nanostructures 63, 304–310 (2014)
94.
Zurück zum Zitat Robinson, S., Nakkeeran, R.: Characteristics of add drop filter using single and dual PCRR in square lattice. Opt. J. Light Electron Opt. 124, 5918–5922 (2013) Robinson, S., Nakkeeran, R.: Characteristics of add drop filter using single and dual PCRR in square lattice. Opt. J. Light Electron Opt. 124, 5918–5922 (2013)
95.
Zurück zum Zitat Rashki, Z., Chabok, S.J.S.M.: Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt. Commun. 395, 231–235 (2017) Rashki, Z., Chabok, S.J.S.M.: Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt. Commun. 395, 231–235 (2017)
96.
Zurück zum Zitat Takahashi, Y., Asano, T., Yamashita, D., Noda, S.: Ultra-compact 32-channel drop filter with 100 GHz spacing. Opt. Express 22, 4692–4698 (2014) Takahashi, Y., Asano, T., Yamashita, D., Noda, S.: Ultra-compact 32-channel drop filter with 100 GHz spacing. Opt. Express 22, 4692–4698 (2014)
97.
Zurück zum Zitat Wu, Y.-D., Shih, T.-T., Lee, J.-J.: High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications. Appl. Opt. 48, F24–F30 (2009) Wu, Y.-D., Shih, T.-T., Lee, J.-J.: High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications. Appl. Opt. 48, F24–F30 (2009)
98.
Zurück zum Zitat Ho, C.P., Li, B., Danner, A.J., Lee, C.: Design and modeling of 2-D photonic crystals based hexagonal triple-nano-ring resonators as biosensors. Microsyst. Technol. 19, 53–60 (2013) Ho, C.P., Li, B., Danner, A.J., Lee, C.: Design and modeling of 2-D photonic crystals based hexagonal triple-nano-ring resonators as biosensors. Microsyst. Technol. 19, 53–60 (2013)
99.
Zurück zum Zitat Sheikhaleh, A., Abedi, K., Jafari, K.: An optical MEMS accelerometer based on a two dimensional photonic crystal add-drop filter. J. Light. Technol. 35, 3029–3034 (2017) Sheikhaleh, A., Abedi, K., Jafari, K.: An optical MEMS accelerometer based on a two dimensional photonic crystal add-drop filter. J. Light. Technol. 35, 3029–3034 (2017)
100.
Zurück zum Zitat Li, B., Hsiao, F.-L., Lee, C.: Computational characterization of a photonic crystal cantilever sensor using a hexagonal dual-nanoring-based channel drop filter. IEEE Trans. Nanotechnol. 10, 789–796 (2011) Li, B., Hsiao, F.-L., Lee, C.: Computational characterization of a photonic crystal cantilever sensor using a hexagonal dual-nanoring-based channel drop filter. IEEE Trans. Nanotechnol. 10, 789–796 (2011)
101.
Zurück zum Zitat Li, B., Hsiao, F.-L., Lee, C.: Configuration analysis of sensing element for photonic crystal based NEMS cantilever using dual nano-ring resonator. Sens. Actuators A Phys. 169, 352–361 (2011) Li, B., Hsiao, F.-L., Lee, C.: Configuration analysis of sensing element for photonic crystal based NEMS cantilever using dual nano-ring resonator. Sens. Actuators A Phys. 169, 352–361 (2011)
Metadaten
Titel
Photonic crystal add–drop filter: a review on principles and applications
verfasst von
Marjan Bazian
Publikationsdatum
05.09.2020
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 1/2021
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-020-00907-7

Weitere Artikel der Ausgabe 1/2021

Photonic Network Communications 1/2021 Zur Ausgabe