Skip to main content
Erschienen in: Neural Computing and Applications 8/2015

01.11.2015 | Original Article

Photovoltaic energy production forecast using support vector regression

verfasst von: R. De Leone, M. Pietrini, A. Giovannelli

Erschienen in: Neural Computing and Applications | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Forecasting models for photovoltaic energy production are important tools for managing energy flows. The aim of this study was to accurately predict the energy production of a PV plant in Italy, using a methodology based on support vector machines . The model uses historical data of solar irradiance, environmental temperature and past energy production to predict the PV energy production for the next day with an interval of 15 min. The technique used is based on \(\nu \)-SVR, a support vector regression model where you can choose the number of support vectors. The forecasts of energy production obtained with the proposed methodology are very accurate, with the \(R^{2}\) coefficient exceeding 90 % . The quality of the predicted values strongly depends on the goodness of the weather forecast, and the \(R^{2}\) value decreases if the predictions of irradiance and temperature are not very accurate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bacher P, Madsen H, Nielsen HA (2009) Online short-term solar power forecasting. Solar Energy 83(10):1772–1783CrossRef Bacher P, Madsen H, Nielsen HA (2009) Online short-term solar power forecasting. Solar Energy 83(10):1772–1783CrossRef
3.
Zurück zum Zitat Bien T, Musikowski HD (2008) Forecasting photovoltaic energy using a fourier series based method. Engineering and system integration, pp 3088–3091 Bien T, Musikowski HD (2008) Forecasting photovoltaic energy using a fourier series based method. Engineering and system integration, pp 3088–3091
6.
Zurück zum Zitat Cococcioni M, D’Andrea E, Lazzerini B (2012) One day-ahead forecasting of energy production in solar photovoltaic installations: an empirical study. Intell Decis Technol 6(3):197–210. doi:10.3233/IDT-2012-0136 Cococcioni M, D’Andrea E, Lazzerini B (2012) One day-ahead forecasting of energy production in solar photovoltaic installations: an empirical study. Intell Decis Technol 6(3):197–210. doi:10.​3233/​IDT-2012-0136
7.
Zurück zum Zitat da Silva Fonseca J, Oozeki T, Takashima T, Koshimizu G, Uchida Y, Ogimoto K (2011) Photovoltaic power production forecasts with support vector regression: a study on the forecast horizon. In: Photovoltaic specialists conference (PVSC), 2011 37th IEEE, pp 2579–2583. doi:10.1109/PVSC.2011.6186475 da Silva Fonseca J, Oozeki T, Takashima T, Koshimizu G, Uchida Y, Ogimoto K (2011) Photovoltaic power production forecasts with support vector regression: a study on the forecast horizon. In: Photovoltaic specialists conference (PVSC), 2011 37th IEEE, pp 2579–2583. doi:10.​1109/​PVSC.​2011.​6186475
8.
Zurück zum Zitat De Cosmis S, De Leone R (2012) Support vector machine for robust regression. In: COMTESSA (ed) Proceedings of the CTW 2012 11th cologne-twente workshop on graph and combinatorial optimization, pp 96–99 De Cosmis S, De Leone R (2012) Support vector machine for robust regression. In: COMTESSA (ed) Proceedings of the CTW 2012 11th cologne-twente workshop on graph and combinatorial optimization, pp 96–99
9.
Zurück zum Zitat De Leone R (2011) Support vector regression for time series analysis. In: Operations research proceedings 2010. Springer, Berlin, pp 33–38 De Leone R (2011) Support vector regression for time series analysis. In: Operations research proceedings 2010. Springer, Berlin, pp 33–38
10.
Zurück zum Zitat Drucker H, Burges CJC, Kaufman L, Smola AJ, Vapnik V (1997) Support vector regression machines. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, pp 155–161 Drucker H, Burges CJC, Kaufman L, Smola AJ, Vapnik V (1997) Support vector regression machines. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, pp 155–161
11.
Zurück zum Zitat Fonseca J Jr, Oozeki T, Takashima T, Koshimizu G, Uchida Y, Ogimoto K (2009) Forecast of power production of a photovoltaic power plant in japan with multilayer perceptron artificial neural networks and support vector machine. Large PV Power Plants and Distributed PV pp 4237–4240 Fonseca J Jr, Oozeki T, Takashima T, Koshimizu G, Uchida Y, Ogimoto K (2009) Forecast of power production of a photovoltaic power plant in japan with multilayer perceptron artificial neural networks and support vector machine. Large PV Power Plants and Distributed PV pp 4237–4240
12.
Zurück zum Zitat Gehler P, Nowozin S (2008) Infinite kernel learning. Technical report 178, Max Planck Institute Gehler P, Nowozin S (2008) Infinite kernel learning. Technical report 178, Max Planck Institute
14.
Zurück zum Zitat Jenkins N, Awad B, Ekanayake JB (2009) Advanced architectures and control concepts for MORE MICROGRIDS. Technical report, more microgrids project consortium Jenkins N, Awad B, Ekanayake JB (2009) Advanced architectures and control concepts for MORE MICROGRIDS. Technical report, more microgrids project consortium
16.
Zurück zum Zitat Müller K-R, Smola AJ, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V (1997) Predicting time series with support vector machines. In: Gerstner W et al. (eds) Artificial neural networks—ICANN’97, vol 1327. Springer, Heidelberg, pp 999–1004 Müller K-R, Smola AJ, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V (1997) Predicting time series with support vector machines. In: Gerstner W et al. (eds) Artificial neural networks—ICANN’97, vol 1327. Springer, Heidelberg, pp 999–1004
20.
Zurück zum Zitat Özögür-Akyüz S, Ünay D, Smola AJ (2011) Guest editorial: model selection and optimization in machine learning. Mach Learn 85(1–2):1–2CrossRef Özögür-Akyüz S, Ünay D, Smola AJ (2011) Guest editorial: model selection and optimization in machine learning. Mach Learn 85(1–2):1–2CrossRef
21.
Zurück zum Zitat Pellegrini M, De Leone R, Maponi P (2013) Reducing power consumption in hydrometric level sensor network using support vector machines. In: PECCS (ed) Proceedings of the PECCS 2013 international conference on pervasive and embedded computing and communication systems, pp 229–232 Pellegrini M, De Leone R, Maponi P (2013) Reducing power consumption in hydrometric level sensor network using support vector machines. In: PECCS (ed) Proceedings of the PECCS 2013 international conference on pervasive and embedded computing and communication systems, pp 229–232
22.
Zurück zum Zitat Schölkopf B, Bartlett P, Smola A, Williamson RC (1999) Shrinking the tube: a new support vector regression algorithm. In: Kearns MS, Solla SA, Cohn DA (eds) Advances in neural information processing systems 11. MIT Press, Cambridge, pp 330–336 Schölkopf B, Bartlett P, Smola A, Williamson RC (1999) Shrinking the tube: a new support vector regression algorithm. In: Kearns MS, Solla SA, Cohn DA (eds) Advances in neural information processing systems 11. MIT Press, Cambridge, pp 330–336
24.
Zurück zum Zitat Simonov M, Mussetta M, Grimaccia F, Leva S, Zich R (2012) Artificial intelligence forecast of pv plant production for integration in smart energy systems. Int Rev Electr Eng 7:3454–3460 Simonov M, Mussetta M, Grimaccia F, Leva S, Zich R (2012) Artificial intelligence forecast of pv plant production for integration in smart energy systems. Int Rev Electr Eng 7:3454–3460
27.
Zurück zum Zitat Vapnik V (1982) Estimation of dependences based on empirical data. Springer Series in Statistics, Springer, New YorkMATH Vapnik V (1982) Estimation of dependences based on empirical data. Springer Series in Statistics, Springer, New YorkMATH
28.
29.
Zurück zum Zitat Vapnik V (1998) Statistical learning theory. Wiley, New YorkMATH Vapnik V (1998) Statistical learning theory. Wiley, New YorkMATH
30.
Zurück zum Zitat Vapnik V, Chervonenkis A (1964) A note on one class of perceptrons. Automation and remote control 25 Vapnik V, Chervonenkis A (1964) A note on one class of perceptrons. Automation and remote control 25
Metadaten
Titel
Photovoltaic energy production forecast using support vector regression
verfasst von
R. De Leone
M. Pietrini
A. Giovannelli
Publikationsdatum
01.11.2015
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 8/2015
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-1842-y

Weitere Artikel der Ausgabe 8/2015

Neural Computing and Applications 8/2015 Zur Ausgabe