Skip to main content

2012 | OriginalPaper | Buchkapitel

7. Physical Aging in Glasses and Composites

verfasst von : Gregory B. McKenna

Erschienen in: Long-Term Durability of Polymeric Matrix Composites

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Physical aging is observed in all glassy materials because of the fact that they are out of equilibrium. The ways in which aging manifests itself are the results of the thermal history of the materials, the environment, and even the constraint of, e.g., fibers or particles. In the present chapter, the fundamentals of aging of glasses are summarized by considering first structural recovery, which is the kinetics of the thermodynamic-type variables such as volume or enthalpy, and its impact on the mechanical response, which is the physical aging. Linear viscoelastic and nonlinear viscoelastic properties as well as yield behaviors will be considered. Furthermore, we will consider environmental effects on physical aging behaviors. The work will end with a perspective on aging in composites and where further research is needed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Silica glass at 1,000°C has a viscosity of 1015.82 Pa s41 and at room temperature, from the reported activation energy, one would estimate the value to be >> 1030 Pa s. In this case, since the Maxwell model [34] estimation of the relaxation time is \( \tau = {\eta_0}/G \) and G ≈ 28 GPa for a window glass [41], then \( t \approx {10^{{30}}}{/}28 \times {10^9}\;{\hbox{s}} \approx {10^{{12}}}\;{\hbox{years}} \) which is much longer than the times available for European cathedral windows to have flowed.
 
2
We remark that the concept of rejuvenation is not completely clear. The idea of a freshly quenched state is often used when one talks of thermal rejuvenation. However, other workers sometimes refer to mechanical rejuvenation and this is more controversial. The reader is advised to see the paper by the current author on mechanical rejuvenation [100] and also the more recent work of Isner and Lacks [132] that investigate the issue using molecular simulations.
 
Literatur
1.
Zurück zum Zitat A.J. Kovacs, “Transition Vitreuse dans les Polyméres Amorphes. Etude Phénoménologique,” Fortschritte der Hochpolymeren-Forschung, 3, 394–507 (1963).CrossRef A.J. Kovacs, “Transition Vitreuse dans les Polyméres Amorphes. Etude Phénoménologique,” Fortschritte der Hochpolymeren-Forschung, 3, 394–507 (1963).CrossRef
2.
Zurück zum Zitat A.Q. Tool, “Relation Between Inelastic Deformability and Thermal Expansion of Glass in Its Annealing Range,” J. Amer. Ceram. Soc., 29, 240–253 (1946); A.Q. Tool, “Viscosity and the Extraordinary Heat Effects in Glass,” J. Research National Bureau of Standards (USA), 37, 73–90 (1946). A.Q. Tool, “Relation Between Inelastic Deformability and Thermal Expansion of Glass in Its Annealing Range,” J. Amer. Ceram. Soc., 29, 240–253 (1946); A.Q. Tool, “Viscosity and the Extraordinary Heat Effects in Glass,” J. Research National Bureau of Standards (USA), 37, 73–90 (1946).
3.
Zurück zum Zitat O.S. Narayanaswamy, “A Model of Structural Relaxation in Glass, “J. Am. Ceram. Soc., 54, 491–498 (1971).CrossRef O.S. Narayanaswamy, “A Model of Structural Relaxation in Glass, “J. Am. Ceram. Soc., 54, 491–498 (1971).CrossRef
4.
Zurück zum Zitat C.T. Moynihan, P.B. Macedo, C.J. Montrose, P.K. Gupta, M.A. DeBolt, J.F. Dill, B.E. Dom, P.W. Drake, A.J. Esteal, P.B. Elterman, R.P. Moeller, H. Sasabe and J.A. Wilder, “Structural Relaxation in Vitreous Materials,” Ann. N.Y. Acad. Sci., 279, 15–35 (1976).CrossRef C.T. Moynihan, P.B. Macedo, C.J. Montrose, P.K. Gupta, M.A. DeBolt, J.F. Dill, B.E. Dom, P.W. Drake, A.J. Esteal, P.B. Elterman, R.P. Moeller, H. Sasabe and J.A. Wilder, “Structural Relaxation in Vitreous Materials,” Ann. N.Y. Acad. Sci., 279, 15–35 (1976).CrossRef
5.
Zurück zum Zitat G.W. Scherer, Relaxation in Glass and Composites, Krieger Publishing Co., Malabar, Florida (1992). G.W. Scherer, Relaxation in Glass and Composites, Krieger Publishing Co., Malabar, Florida (1992).
6.
Zurück zum Zitat G.B. McKenna, “Glass Formation and Glassy Behavior,” in Comprehensive Polymer Science, Vol. 2: Polymer Properties, ed. by C. Booth and C. Price, Pergamon Press, Oxford, (1989) pp. 311–362. G.B. McKenna, “Glass Formation and Glassy Behavior,” in Comprehensive Polymer Science, Vol. 2: Polymer Properties, ed. by C. Booth and C. Price, Pergamon Press, Oxford, (1989) pp. 311–362.
7.
Zurück zum Zitat J.M. Hutchinson, “Physical Aging in Polymers,” Progress in Polymer Science, 20, 703–760 (1995).CrossRef J.M. Hutchinson, “Physical Aging in Polymers,” Progress in Polymer Science, 20, 703–760 (1995).CrossRef
8.
Zurück zum Zitat S.L. Simon, “Physical Aging,” Chapter in Encyclopedia of Polymer Science, this edition (2001). S.L. Simon, “Physical Aging,” Chapter in Encyclopedia of Polymer Science, this edition (2001).
9.
Zurück zum Zitat L.C.E. Struik, Physical Aging in Polymers and Other Amorphous Materials, Elsevier, Amsterdam (1976). L.C.E. Struik, Physical Aging in Polymers and Other Amorphous Materials, Elsevier, Amsterdam (1976).
10.
Zurück zum Zitat C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan and S.W. Martin, “Relaxation in Glassforming Liquids and Amorphous Solids,” J. Appl. Phys., 88, 3113–3157 (2000).CrossRef C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan and S.W. Martin, “Relaxation in Glassforming Liquids and Amorphous Solids,” J. Appl. Phys., 88, 3113–3157 (2000).CrossRef
11.
Zurück zum Zitat S.E.B. Petrie, “Thermal behavior of annealed organic glasses,” J. Polym. Sci. A-2, 10, 1255–1272 (1972).CrossRef S.E.B. Petrie, “Thermal behavior of annealed organic glasses,” J. Polym. Sci. A-2, 10, 1255–1272 (1972).CrossRef
12.
Zurück zum Zitat A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson and A.R. Ramos, “Isobaric Volume and Enthalpy Recovery of Glasses. II. A Transparent Multiparameter Model,” J. Polym. Sci., Polym. Phys. Ed., 17, 1097–1162 (1979).CrossRef A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson and A.R. Ramos, “Isobaric Volume and Enthalpy Recovery of Glasses. II. A Transparent Multiparameter Model,” J. Polym. Sci., Polym. Phys. Ed., 17, 1097–1162 (1979).CrossRef
13.
Zurück zum Zitat I.M. Hodge, “Enthalpy Relaxation and Recovery in Amorphous Materials,” J. Non-Crystalline Solids, 169, 211–266 (1984).CrossRef I.M. Hodge, “Enthalpy Relaxation and Recovery in Amorphous Materials,” J. Non-Crystalline Solids, 169, 211–266 (1984).CrossRef
14.
Zurück zum Zitat G.B. McKenna and S.L. Simon, “The glass transition: Its measurement and underlying physics,” in Handbook of Thermal Analysis and Calorimetry, 3 rd . Ed., S.Z.D. Cheng, editor. Elsevier, Amsterdam (2002). G.B. McKenna and S.L. Simon, “The glass transition: Its measurement and underlying physics,” in Handbook of Thermal Analysis and Calorimetry, 3 rd . Ed., S.Z.D. Cheng, editor. Elsevier, Amsterdam (2002).
15.
Zurück zum Zitat J.M. O’Reilly, “Review of structure and mobility in amorphous polymers,” CRC Critical Reviews in Solid State and Materials Sciences, 13, 259–277 (1987).CrossRef J.M. O’Reilly, “Review of structure and mobility in amorphous polymers,” CRC Critical Reviews in Solid State and Materials Sciences, 13, 259–277 (1987).CrossRef
16.
Zurück zum Zitat R.N. Haward, The Physics of Glassy Polymers, Applied Science, London (1973). R.N. Haward, The Physics of Glassy Polymers, Applied Science, London (1973).
17.
Zurück zum Zitat Assignment of the Glass Transition, R.J. Seiler, ed., ASTM STP 1249, American Society for Testing and Materials, Philadelphia, PA (1994). Assignment of the Glass Transition, R.J. Seiler, ed., ASTM STP 1249, American Society for Testing and Materials, Philadelphia, PA (1994).
18.
Zurück zum Zitat S.V. Nemilov, Thermodynamic and Kinetic Aspects of the Vitreous State, CRC Press, Boca Raton, FL (1995). S.V. Nemilov, Thermodynamic and Kinetic Aspects of the Vitreous State, CRC Press, Boca Raton, FL (1995).
19.
Zurück zum Zitat E.J. Donth, The glass transition: relaxation dynamics in liquids and disordered materials, Springer-Verlag, New York (2001). E.J. Donth, The glass transition: relaxation dynamics in liquids and disordered materials, Springer-Verlag, New York (2001).
20.
Zurück zum Zitat M.R. Tant and A.J. Hill, Structure and Properties of Glassy Polymers, ACS Symposium Series 710, American Chemical Society, Washington, DC (1998). M.R. Tant and A.J. Hill, Structure and Properties of Glassy Polymers, ACS Symposium Series 710, American Chemical Society, Washington, DC (1998).
21.
Zurück zum Zitat P.A. O’Connell and G.B. McKenna, “Large Deformation Response of Polycarbonate: Time-temperature and Time-Aging Time Superposition,” in Handbook of Polycarbonate Science and Technology, ed. by D.G. LeGrand and J.T. Bendler, Marcel Dekker, New York, Chapter 10, pp 225–254 (1999). P.A. O’Connell and G.B. McKenna, “Large Deformation Response of Polycarbonate: Time-temperature and Time-Aging Time Superposition,” in Handbook of Polycarbonate Science and Technology, ed. by D.G. LeGrand and J.T. Bendler, Marcel Dekker, New York, Chapter 10, pp 225–254 (1999).
22.
Zurück zum Zitat S. Arrese-Igor, O.Mitxelena, A. Arbe, A. Alegría, J. Colmenero and B. Frick, “Effect of stretching on the sub-Tg phenylene-ring dynamics of polycarbonate by neutron scattering,” Phys. Rev. E., 78, 021801–1 - 021801–8 (2008).CrossRef S. Arrese-Igor, O.Mitxelena, A. Arbe, A. Alegría, J. Colmenero and B. Frick, “Effect of stretching on the sub-Tg phenylene-ring dynamics of polycarbonate by neutron scattering,” Phys. Rev. E., 78, 021801–1 - 021801–8 (2008).CrossRef
23.
Zurück zum Zitat G.B. McKenna, “On the Physics Required for the Prediction of Long Term Performance of Polymers and Their Composites,” J. Res. NIST, 99, 169–189 (1994). G.B. McKenna, “On the Physics Required for the Prediction of Long Term Performance of Polymers and Their Composites,” J. Res. NIST, 99, 169–189 (1994).
24.
Zurück zum Zitat G.B. McKenna, “Interlaminar Effects in Fiber Reinforced Plastics--A Review,” Polymer-Plast. Technol. Eng., 5, 23–53 (1975).CrossRef G.B. McKenna, “Interlaminar Effects in Fiber Reinforced Plastics--A Review,” Polymer-Plast. Technol. Eng., 5, 23–53 (1975).CrossRef
25.
Zurück zum Zitat Composite Materials: Testing and Design, ASTM STP 460, American Society for Testing and Materials, Philadelphia, PA (1969). Composite Materials: Testing and Design, ASTM STP 460, American Society for Testing and Materials, Philadelphia, PA (1969).
26.
Zurück zum Zitat Composite Materials: Testing and Design (Third Conference), ASTM STP 546, American Society for Testing and Materials, Philadelphia, PA (1973). Composite Materials: Testing and Design (Third Conference), ASTM STP 546, American Society for Testing and Materials, Philadelphia, PA (1973).
27.
Zurück zum Zitat J.R. Vinson and T.W. Chou, Composite Materials and Their Use in Structures, Applied Science Publishers, London (1975). J.R. Vinson and T.W. Chou, Composite Materials and Their Use in Structures, Applied Science Publishers, London (1975).
28.
Zurück zum Zitat Composite Materials, ed. by L.J. Broutman and R.H. Krock, Vol. 2. Mechanics of Composite Materials, ed. by G.P. Sendeckyj, Academic Press, New York (1971). Composite Materials, ed. by L.J. Broutman and R.H. Krock, Vol. 2. Mechanics of Composite Materials, ed. by G.P. Sendeckyj, Academic Press, New York (1971).
29.
Zurück zum Zitat D.J. Plazek,“Temperature Dependence of the Viscoelastic Behavior of Polystyrene,” J. Phys. Chem., 69, 3480–3487 (1965).CrossRef D.J. Plazek,“Temperature Dependence of the Viscoelastic Behavior of Polystyrene,” J. Phys. Chem., 69, 3480–3487 (1965).CrossRef
30.
Zurück zum Zitat H. Vogel, “Das Temperaaturabhängigkeitsgesetz der Viskosität Flüssigkeiten,” Phys. Z., 22, 645–646 (1921). H. Vogel, “Das Temperaaturabhängigkeitsgesetz der Viskosität Flüssigkeiten,” Phys. Z., 22, 645–646 (1921).
31.
Zurück zum Zitat G. S. Fulcher, “Analysis of Recent Measurements of the Viscosity of Glasses,” J. Am. Ceram. Soc., 8, 339–355 (1925).CrossRef G. S. Fulcher, “Analysis of Recent Measurements of the Viscosity of Glasses,” J. Am. Ceram. Soc., 8, 339–355 (1925).CrossRef
32.
Zurück zum Zitat G. Tammann, “Glasses as supercooled liquids,” J. Soc. Glass Technol. 9, 166–185 (1925). G. Tammann, “Glasses as supercooled liquids,” J. Soc. Glass Technol. 9, 166–185 (1925).
33.
Zurück zum Zitat M.L. Williams, R.F. Landel and J.D. Ferry, “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids,” Journal of the American Chemical Society, 77, 3701–3707 (1955).CrossRef M.L. Williams, R.F. Landel and J.D. Ferry, “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids,” Journal of the American Chemical Society, 77, 3701–3707 (1955).CrossRef
34.
Zurück zum Zitat J.D. Ferry,Viscoelastic Properties of Polymers, 3rd. Edition, J. Wiley and Sons, New York (1980). J.D. Ferry,Viscoelastic Properties of Polymers, 3rd. Edition, J. Wiley and Sons, New York (1980).
35.
Zurück zum Zitat T. Hecksher, A.I. Nielsen, N.B. Olsen and J.C. Dyre, “Little evidence for dynamic divergences in ultraviscous molecular liquids,” Nature Physics, 4, 737–741 (2008).CrossRef T. Hecksher, A.I. Nielsen, N.B. Olsen and J.C. Dyre, “Little evidence for dynamic divergences in ultraviscous molecular liquids,” Nature Physics, 4, 737–741 (2008).CrossRef
36.
Zurück zum Zitat G.B. McKenna, “Glass dynamics - Diverging views on glass transition, Nature Physics, 4, 673–674 (2008).CrossRef G.B. McKenna, “Glass dynamics - Diverging views on glass transition, Nature Physics, 4, 673–674 (2008).CrossRef
37.
Zurück zum Zitat C.A. Bero and D.J. Plazek, “Volume-dependent rate processes in an epoxy resin,” J. Polym. Sci. Part B: Polymer Physics, 29, 39–47 (1991).CrossRef C.A. Bero and D.J. Plazek, “Volume-dependent rate processes in an epoxy resin,” J. Polym. Sci. Part B: Polymer Physics, 29, 39–47 (1991).CrossRef
38.
Zurück zum Zitat C.T. Moynihan, A.J. Easteal, M.A. DeBolt and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Ceramic Soc., 59(1–2), 12–16 (1976).CrossRef C.T. Moynihan, A.J. Easteal, M.A. DeBolt and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Ceramic Soc., 59(1–2), 12–16 (1976).CrossRef
39.
Zurück zum Zitat P. Badrinarayanan, W. Zheng, Q.X. Li and S.L. Simon, “The glass transition temperature versus the fictive temperature,” J. Non-Crystalline Solids, 353, 2603–2612 (2007).CrossRef P. Badrinarayanan, W. Zheng, Q.X. Li and S.L. Simon, “The glass transition temperature versus the fictive temperature,” J. Non-Crystalline Solids, 353, 2603–2612 (2007).CrossRef
40.
Zurück zum Zitat J.Y. Park and G.B. McKenna, “Size and confinement effects on the glass transition behavior of polystyrene/o-terphenyl polymer solutions, Phys. Rev. B., 61, 6667–6676 (2000).CrossRef J.Y. Park and G.B. McKenna, “Size and confinement effects on the glass transition behavior of polystyrene/o-terphenyl polymer solutions, Phys. Rev. B., 61, 6667–6676 (2000).CrossRef
41.
Zurück zum Zitat W.D. Callister, Jr. and D.G. Rethwisch, Fundamentals of Materials Science and Engineering. An Integrated Approach, 3 rd . Ed., J. Wiley and Sons, Hoboken, NJ, USA (2008). W.D. Callister, Jr. and D.G. Rethwisch, Fundamentals of Materials Science and Engineering. An Integrated Approach, 3 rd . Ed., J. Wiley and Sons, Hoboken, NJ, USA (2008).
42.
Zurück zum Zitat R.H. Doremus, “Viscosity of Silica,” J. Appl. Physics, 92, 7619–7629 (2002).CrossRef R.H. Doremus, “Viscosity of Silica,” J. Appl. Physics, 92, 7619–7629 (2002).CrossRef
43.
Zurück zum Zitat Y. Zheng and G.B. McKenna, “Structural Recovery in a Model Epoxy: Comparison of Responses after Temperature and Relative Humidity Jumps,” Macromolecules, 36, 2387–2396 (2003).CrossRef Y. Zheng and G.B. McKenna, “Structural Recovery in a Model Epoxy: Comparison of Responses after Temperature and Relative Humidity Jumps,” Macromolecules, 36, 2387–2396 (2003).CrossRef
44.
Zurück zum Zitat I. Echeverria, P.-C. Su, S.L. Simon and D.J. Plazek, “Physical aging of a polyetherimide: Creep and DSC measurements,” J. Polymer Science. Part B: Polymer Physics, 33, 2457–2468 (1995).CrossRef I. Echeverria, P.-C. Su, S.L. Simon and D.J. Plazek, “Physical aging of a polyetherimide: Creep and DSC measurements,” J. Polymer Science. Part B: Polymer Physics, 33, 2457–2468 (1995).CrossRef
45.
Zurück zum Zitat L. Boltzmann, “Zur Theorie der Elastischen Nachwirkung,” Sitzungsber. Akad. Wiss. Wien. Mathem.-Naturwiss. Kl., 70, 2. Abt. 275–300 (1874). L. Boltzmann, “Zur Theorie der Elastischen Nachwirkung,” Sitzungsber. Akad. Wiss. Wien. Mathem.-Naturwiss. Kl., 70, 2. Abt. 275–300 (1874).
46.
Zurück zum Zitat R. Kohlrausch, “Theorie des Elektrischen Rückstandes in der Leidener Flasche,” Annalen der Physik und Chemie von J.C. Poggendorff, 91, 179–214 (1854).CrossRef R. Kohlrausch, “Theorie des Elektrischen Rückstandes in der Leidener Flasche,” Annalen der Physik und Chemie von J.C. Poggendorff, 91, 179–214 (1854).CrossRef
47.
Zurück zum Zitat G. Williams and D.C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970).CrossRef G. Williams and D.C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970).CrossRef
48.
Zurück zum Zitat P. Badrinarayanan, S.L. Simon, R.J. Lyn and J.M. O’Reilly, “Effect of structure on enthalpy relaxation of polycarbonate: Experiments and modeling,” Polymer, 49, 3554–3560 (2008).CrossRef P. Badrinarayanan, S.L. Simon, R.J. Lyn and J.M. O’Reilly, “Effect of structure on enthalpy relaxation of polycarbonate: Experiments and modeling,” Polymer, 49, 3554–3560 (2008).CrossRef
49.
Zurück zum Zitat G.B. McKenna and S.L. Simon, “Time-dependent volume and enthalpy responses in polymers,” in Time dependent and nonlinear effects in polymers and composites, ASTM STP 1357, R.A. Schapery and C.T. Sun, eds., West Conshohocken, PA, pp 18–46 (2000).CrossRef G.B. McKenna and S.L. Simon, “Time-dependent volume and enthalpy responses in polymers,” in Time dependent and nonlinear effects in polymers and composites, ASTM STP 1357, R.A. Schapery and C.T. Sun, eds., West Conshohocken, PA, pp 18–46 (2000).CrossRef
50.
Zurück zum Zitat C.R. Schultheisz and G.B. McKenna, “Volume recovery, physical aging and the tau-effective paradox in glassy polycarbonate following temperature jumps,” Proceedings of the 25th Annual Conference of the North American Thermal Analysis Society, September 7–9, McClean, VA, pp 366–373 (1997). C.R. Schultheisz and G.B. McKenna, “Volume recovery, physical aging and the tau-effective paradox in glassy polycarbonate following temperature jumps,” Proceedings of the 25th Annual Conference of the North American Thermal Analysis Society, September 7–9, McClean, VA, pp 366–373 (1997).
51.
52.
Zurück zum Zitat G.B. McKenna, C.A. Angell, R.W. Rendell, C.T. Moynihan, A.J. Kovacs,J.M. Hutchinson, M. Oguni, J. O’Reilly, L. Struik, I.M. Hodge, J.C. Bauwens, E. Oleynick, S. Rekhson, G. Williams and S. Matsuoka, “The phenomenology and models of the kinetics of volume and enthalpy in the glass transition range,” J. Non-Crystalline Solids, 131, 528–536 (1991).CrossRef G.B. McKenna, C.A. Angell, R.W. Rendell, C.T. Moynihan, A.J. Kovacs,J.M. Hutchinson, M. Oguni, J. O’Reilly, L. Struik, I.M. Hodge, J.C. Bauwens, E. Oleynick, S. Rekhson, G. Williams and S. Matsuoka, “The phenomenology and models of the kinetics of volume and enthalpy in the glass transition range,” J. Non-Crystalline Solids, 131, 528–536 (1991).CrossRef
53.
Zurück zum Zitat L. Andreozzia, M. Faetti, F. Zulli, and M. Giordano, “Enthalpy relaxation of polymers: comparing the predictive power of two configurational entropy models extending the AGV approach,” Eur. Phys. J. B., 41, 383–393 (2004).CrossRef L. Andreozzia, M. Faetti, F. Zulli, and M. Giordano, “Enthalpy relaxation of polymers: comparing the predictive power of two configurational entropy models extending the AGV approach,” Eur. Phys. J. B., 41, 383–393 (2004).CrossRef
54.
Zurück zum Zitat J.M. Hutchinson, S. Montserrat, Y. Calventus and P. Cortes, “Application of the Adam-Gibbs equation to the non-equilibrium glassy state,” Macromolecules, 33, 5252–5262 (2000).CrossRef J.M. Hutchinson, S. Montserrat, Y. Calventus and P. Cortes, “Application of the Adam-Gibbs equation to the non-equilibrium glassy state,” Macromolecules, 33, 5252–5262 (2000).CrossRef
55.
Zurück zum Zitat P. Bernazanni and S.L. Simon,” Volume Recovery of Polystyrene: Evolution of the Characteristic Relaxation Time,” J. Non-Crystalline Solids, 307, 470–480 (2002).CrossRef P. Bernazanni and S.L. Simon,” Volume Recovery of Polystyrene: Evolution of the Characteristic Relaxation Time,” J. Non-Crystalline Solids, 307, 470480 (2002).CrossRef
56.
Zurück zum Zitat S.L. Simon and P. Bernazanni, “Structural Relaxation in the Glass: Evidence for a Path Dependence of the Relaxation Time,” J. Non-Crystalline Solids, 352, 4763–4768 (2006).CrossRef S.L. Simon and P. Bernazanni, “Structural Relaxation in the Glass: Evidence for a Path Dependence of the Relaxation Time,” J. Non-Crystalline Solids, 352, 4763–4768 (2006).CrossRef
57.
Zurück zum Zitat It is important to note that ideas such as free volume and its distribution are inherently heterogeneous. For instance, in the KAHR model12, it was recognized that the local relaxation time could depend on the local free volume or local departure from equilibrium δI but the choice was made to simply use the global departure from equilibrium because of limited computational capacity available at that time. It is important to note that ideas such as free volume and its distribution are inherently heterogeneous. For instance, in the KAHR model12, it was recognized that the local relaxation time could depend on the local free volume or local departure from equilibrium δI but the choice was made to simply use the global departure from equilibrium because of limited computational capacity available at that time.
58.
Zurück zum Zitat R.E. Robertson, R. Simha and J.G. Curro, “Free-volume and the kinetics of aging of polymer glasses,” Macromolecules, 17, 911–919 (1984).CrossRef R.E. Robertson, R. Simha and J.G. Curro, “Free-volume and the kinetics of aging of polymer glasses,” Macromolecules, 17, 911–919 (1984).CrossRef
59.
Zurück zum Zitat R. Simha and T. Somcynsky, “Statistical thermodynamics of spherical and chain molecule fluid,” Macromolecules, 2, 342–350 (1969).CrossRef R. Simha and T. Somcynsky, “Statistical thermodynamics of spherical and chain molecule fluid,” Macromolecules, 2, 342–350 (1969).CrossRef
60.
Zurück zum Zitat G. Adam and J.H. Gibbs, “The temperature dependence of cooperative relaxation properties in glass-forming liquids,” J. Chem. Phys., 43, 139–146 (1965).CrossRef G. Adam and J.H. Gibbs, “The temperature dependence of cooperative relaxation properties in glass-forming liquids,” J. Chem. Phys., 43, 139–146 (1965).CrossRef
61.
Zurück zum Zitat T.S. Chow, “Free volume distributions in amorphous polymers,” Macromolecular Theory and Simulations,” 4, 397-4-4 (1995).CrossRef T.S. Chow, “Free volume distributions in amorphous polymers,” Macromolecular Theory and Simulations,” 4, 397-4-4 (1995).CrossRef
62.
Zurück zum Zitat J. Liu, Q. Deng and Y.C. Jean, “Free-Volume Distributions of Polystyrene Probed by Positron-annihilation--Comparison with Free-volume Theories,” Macromolecules, 26, 7149–7155 (1993).CrossRef J. Liu, Q. Deng and Y.C. Jean, “Free-Volume Distributions of Polystyrene Probed by Positron-annihilation--Comparison with Free-volume Theories,” Macromolecules, 26, 7149–7155 (1993).CrossRef
63.
Zurück zum Zitat M. Schmidt and F.H.J. Maurer, “Isotropic pressure-densified atactic poly(methyl methacrylate) glasses: Free-volume properties from equation-of-state data and positron annihilation lifetime spectroscopy,” Macromolecules, 33, 3879–3891 (2000).CrossRef M. Schmidt and F.H.J. Maurer, “Isotropic pressure-densified atactic poly(methyl methacrylate) glasses: Free-volume properties from equation-of-state data and positron annihilation lifetime spectroscopy,” Macromolecules, 33, 3879–3891 (2000).CrossRef
64.
Zurück zum Zitat Y.C. Jean, “Can positron annihilation lifetime spectroscopy measure the free-volume hole size distribution in amorphous polymers? Comment,” Macromolecules, 29, 5756–5757 (1996).CrossRef Y.C. Jean, “Can positron annihilation lifetime spectroscopy measure the free-volume hole size distribution in amorphous polymers? Comment,” Macromolecules, 29, 5756–5757 (1996).CrossRef
65.
Zurück zum Zitat R. Richert, “Heterogeneous Dynamics in Liquids: Fluctuations in Time and Space,” J. Phys.: Condens. Matter, 14, R703 - R738 (2002).CrossRef R. Richert, “Heterogeneous Dynamics in Liquids: Fluctuations in Time and Space,” J. Phys.: Condens. Matter, 14, R703 - R738 (2002).CrossRef
66.
Zurück zum Zitat M. Ediger, “Spatially Heterogeneous Dynamics in Supercooled Liquids,” Annu. Rev. Phys. Chem. 51, 99–128 (2000).CrossRef M. Ediger, “Spatially Heterogeneous Dynamics in Supercooled Liquids,” Annu. Rev. Phys. Chem. 51, 99–128 (2000).CrossRef
67.
Zurück zum Zitat S. C. Glotzer, “Spatially Heterogeneous Dynamics in Liquids: Insights from Simulation,” J. Non-Cryst. Solids, 274, 342–355 (2000).CrossRef S. C. Glotzer, “Spatially Heterogeneous Dynamics in Liquids: Insights from Simulation,” J. Non-Cryst. Solids, 274, 342–355 (2000).CrossRef
68.
Zurück zum Zitat R. Bohmer, “Non-exponential Relaxation in Disordered Materials: Phenomenological Correlations and Spectrally Selective Experiments,” Phase Transitions, 65, 211 (1998).CrossRef R. Bohmer, “Non-exponential Relaxation in Disordered Materials: Phenomenological Correlations and Spectrally Selective Experiments,” Phase Transitions, 65, 211 (1998).CrossRef
69.
Zurück zum Zitat R. Bohmer, “Nanoscale Heterogeneity of Glass-Forming Liquids: Experimental Advances,” Curr. Opin. Solid State Mater. Sci., 3, 378–385 (1998).CrossRef R. Bohmer, “Nanoscale Heterogeneity of Glass-Forming Liquids: Experimental Advances,” Curr. Opin. Solid State Mater. Sci., 3, 378–385 (1998).CrossRef
70.
Zurück zum Zitat C. T. Thurau and M. D. Ediger, “Influence of Spatially Heterogeneous Dynamics on Physical Aging of Polystyrene,” J. Chem. Phys., 116, 9089–9099 (2002).CrossRef C. T. Thurau and M. D. Ediger, “Influence of Spatially Heterogeneous Dynamics on Physical Aging of Polystyrene,” J. Chem. Phys., 116, 9089–9099 (2002).CrossRef
71.
Zurück zum Zitat P. Chaudhuri, L. Berthier, S. Sastry and W. Kob, “On the relaxation dynamics of glass-forming systems: Insights from computer simulations,” Modeling and Simulation of New Materials, AIP Conference Proceedings, Volume 1091, 95–108 (2009). P. Chaudhuri, L. Berthier, S. Sastry and W. Kob, “On the relaxation dynamics of glass-forming systems: Insights from computer simulations,” Modeling and Simulation of New Materials, AIP Conference Proceedings, Volume 1091, 95–108 (2009).
72.
Zurück zum Zitat T. R. Bohme and J. J. dePablo, “Evidence for Size-Dependent Mechanical Properties from Simulations of Nanoscopic Polymeric Structures,” J. Chem. Phys., 116 (22) 9939–9951 (2002).CrossRef T. R. Bohme and J. J. dePablo, “Evidence for Size-Dependent Mechanical Properties from Simulations of Nanoscopic Polymeric Structures,” J. Chem. Phys., 116 (22) 9939–9951 (2002).CrossRef
73.
Zurück zum Zitat J. Dudowicz, K.F. Freed KF and J.F. Douglas, “Generalized entropy theory of polymer glass formation,” Advances in Chemical Physics, 137, 125–222 (2008).CrossRef J. Dudowicz, K.F. Freed KF and J.F. Douglas, “Generalized entropy theory of polymer glass formation,” Advances in Chemical Physics, 137, 125–222 (2008).CrossRef
74.
Zurück zum Zitat K. Chen, E.J. Saltzman and K.S. Schweizer, “Segmental dynamics in polymers: from cold melts to ageing and stressed glasses,” J. Phys.: Cond. Matter, 21, 503101–1 – 503101–20 (2009). K. Chen, E.J. Saltzman and K.S. Schweizer, “Segmental dynamics in polymers: from cold melts to ageing and stressed glasses,” J. Phys.: Cond. Matter, 21, 503101–1 – 503101–20 (2009).
75.
Zurück zum Zitat J.M. Caruthers, School of Chemical Engineering, Purdue University, Lafayette, IN. The work is originally published in Ph.D. theses referenced below. The first paper by Lustig, Shay and Caruthers that put the model into the literature is also cited below. The more recent developments by Caruthers in collaboration with Adolf and Chambers and then extended by Adolf and others are broad and well implemented attempts to make the model more useful and to develop fuller understanding of the strengths and limitations of the model from an engineering perspective. J.M. Caruthers, School of Chemical Engineering, Purdue University, Lafayette, IN. The work is originally published in Ph.D. theses referenced below. The first paper by Lustig, Shay and Caruthers that put the model into the literature is also cited below. The more recent developments by Caruthers in collaboration with Adolf and Chambers and then extended by Adolf and others are broad and well implemented attempts to make the model more useful and to develop fuller understanding of the strengths and limitations of the model from an engineering perspective.
76.
Zurück zum Zitat S.R. Lustig (1989) “A Continuum Thermodynamics Theory for Transport in Polymer/Fluid Systems,” Ph.D. Thesis, Purdue University, Lafayette, IN. S.R. Lustig (1989) “A Continuum Thermodynamics Theory for Transport in Polymer/Fluid Systems,” Ph.D. Thesis, Purdue University, Lafayette, IN.
77.
Zurück zum Zitat Colucci, D.M., (1995) “The Effect of Temperature and Deformation on the Relaxation Behavior in the Glass Transition Region,” Ph.D. Thesis, School of Chemical Engineering, Purdue University, Lafayette, IN. Colucci, D.M., (1995) “The Effect of Temperature and Deformation on the Relaxation Behavior in the Glass Transition Region,” Ph.D. Thesis, School of Chemical Engineering, Purdue University, Lafayette, IN.
78.
Zurück zum Zitat D.S. McWilliams, (1996) “Study of the Effect of Thermal History on the Structural Relaxation and Thermoviscoelasticity of Amorphous Polymers,” Ph.D. Thesis, Purdue University, Lafayette, IN. D.S. McWilliams, (1996) “Study of the Effect of Thermal History on the Structural Relaxation and Thermoviscoelasticity of Amorphous Polymers,” Ph.D. Thesis, Purdue University, Lafayette, IN.
79.
Zurück zum Zitat S.R. Lustig, R.M. Shay and J.M. Caruthers, “Thermodynamic Constitutive Equations for Materials with Memory on a Material Time Scale,” Journal of Rheology, 40, 69–106 (1996).CrossRef S.R. Lustig, R.M. Shay and J.M. Caruthers, “Thermodynamic Constitutive Equations for Materials with Memory on a Material Time Scale,” Journal of Rheology, 40, 69–106 (1996).CrossRef
80.
Zurück zum Zitat D.B. Adolf, R.S. Chambers and J.M. Caruthers, “Extensive Validation of a Thermodynamically Consistent, Nonlinear Viscoelastic Model for Glassy Polymers,” Polymer, 45, 4599–4621 (2004).CrossRef D.B. Adolf, R.S. Chambers and J.M. Caruthers, “Extensive Validation of a Thermodynamically Consistent, Nonlinear Viscoelastic Model for Glassy Polymers,” Polymer, 45, 4599–4621 (2004).CrossRef
81.
Zurück zum Zitat J.M. Caruthers, D.B. Adolf, R.S. Chambers, P. Shrikhande, “A Thermodynamically Consistent, Nonlinear Viscoelastic Approach for Modeling Glassy Polymers,” Polymer, 45, 4577–4597 (2004).CrossRef J.M. Caruthers, D.B. Adolf, R.S. Chambers, P. Shrikhande, “A Thermodynamically Consistent, Nonlinear Viscoelastic Approach for Modeling Glassy Polymers,” Polymer, 45, 4577–4597 (2004).CrossRef
82.
Zurück zum Zitat D.B. Adolf and R.S. Chambers, “Application of a Nonlinear Viscoelastic Model to Glassy, Particulate-Filled Polymers,” Journal of Polymer Science: Part B. Polymer Physics, 43, 3135–3150 (2005).CrossRef D.B. Adolf and R.S. Chambers, “Application of a Nonlinear Viscoelastic Model to Glassy, Particulate-Filled Polymers,” Journal of Polymer Science: Part B. Polymer Physics, 43, 3135–3150 (2005).CrossRef
83.
Zurück zum Zitat D.B. Adolf and R.S. Chambers, “A Thermodynamically Consistent, Nonlinear Viscoelastic Approach for Modeling Thermosets during Cure,” J. Rheol., 51, 23–50 (2007).CrossRef D.B. Adolf and R.S. Chambers, “A Thermodynamically Consistent, Nonlinear Viscoelastic Approach for Modeling Thermosets during Cure,” J. Rheol., 51, 23–50 (2007).CrossRef
84.
Zurück zum Zitat D.B. Adolf, R.S. Chambers, J. Flemming, J. Budzien and J. McCoy, “Potential Energy Clock Model: justification and Challenging Predictions,” J. Rheology, 51, 517–540 (2007).CrossRef D.B. Adolf, R.S. Chambers, J. Flemming, J. Budzien and J. McCoy, “Potential Energy Clock Model: justification and Challenging Predictions,” J. Rheology, 51, 517–540 (2007).CrossRef
85.
Zurück zum Zitat C. Truesdell, Rational Thermodynamics, 2nd ed., Springer-Verlag, New York (1984). C. Truesdell, Rational Thermodynamics, 2nd ed., Springer-Verlag, New York (1984).
86.
Zurück zum Zitat Typically one uses Maxwell relations to relate the different thermodynamic variables (specific volume, enthalpy, coefficient of thermal expansion, heat capacity for example) to the free energy of the system6,87. Typically one uses Maxwell relations to relate the different thermodynamic variables (specific volume, enthalpy, coefficient of thermal expansion, heat capacity for example) to the free energy of the system6,87.
87.
Zurück zum Zitat Typically any general thermodynamics text will have the appropriate relations. See, e.g., R.A. Swalin, Thermodynamics of Solids, second edition, Wiley-Interscience, 1972. Typically any general thermodynamics text will have the appropriate relations. See, e.g., R.A. Swalin, Thermodynamics of Solids, second edition, Wiley-Interscience, 1972.
88.
Zurück zum Zitat S.R. de Groot and P. Mazur, Nonequilibrium Thermodynamics, Dover Publications, Mineola, NY (1984). S.R. de Groot and P. Mazur, Nonequilibrium Thermodynamics, Dover Publications, Mineola, NY (1984).
89.
Zurück zum Zitat S. Lengyel, “On Classical Nonequililbrium Thermodynamics and Its Extensions,” Lecture Notes in Physics, 199, 398–406 (1984).CrossRef S. Lengyel, “On Classical Nonequililbrium Thermodynamics and Its Extensions,” Lecture Notes in Physics, 199, 398–406 (1984).CrossRef
90.
Zurück zum Zitat F. Bampi and A. Morro, “Nonequilibrium thermodynamics—A hidden variable approach,” Lecture Notes in Physics, 199, 211–232 (1984).CrossRef F. Bampi and A. Morro, “Nonequilibrium thermodynamics—A hidden variable approach,” Lecture Notes in Physics, 199, 211–232 (1984).CrossRef
91.
Zurück zum Zitat H.C. Ottinger, Beyond Equilibrium Thermodynamics, Wiley, Hoboken, NJ, USA (2005).CrossRef H.C. Ottinger, Beyond Equilibrium Thermodynamics, Wiley, Hoboken, NJ, USA (2005).CrossRef
92.
Zurück zum Zitat I. Prigogine, Introduction to Thermodynamics of Irreversible Processes. 3 rd edition, Wiley Interscience, New York (1967). I. Prigogine, Introduction to Thermodynamics of Irreversible Processes. 3 rd edition, Wiley Interscience, New York (1967).
93.
Zurück zum Zitat B.D. Coleman, “Thermodynamics of Materials with Memory,” Archives of Rational Mechanics and Analysis, 17, 1–46 (1964). B.D. Coleman, “Thermodynamics of Materials with Memory,” Archives of Rational Mechanics and Analysis, 17, 1–46 (1964).
94.
Zurück zum Zitat B.D. Coleman, “On Thermodynamics, Strain Impulses, and Viscoelasticity,” Archives of Rational Mechanics and Analysis, 17, 230–254 (1964). B.D. Coleman, “On Thermodynamics, Strain Impulses, and Viscoelasticity,” Archives of Rational Mechanics and Analysis, 17, 230–254 (1964).
95.
Zurück zum Zitat W.Noll, “A Mathematical Theory of the Mechanical Behavior of Continuous Media,” Archives of Rational Mechanics and Analysis, 2,197–226 (1958).CrossRef W.Noll, “A Mathematical Theory of the Mechanical Behavior of Continuous Media,” Archives of Rational Mechanics and Analysis, 2,197–226 (1958).CrossRef
96.
Zurück zum Zitat D.B. Adolf, R.S. Chambers, J. Flemming, J. Budzien and J.McCoy, “Potential Energy Clock Model: Justification and Challenging Predictions,” J. Rheol., 51, 517–540 (2007).CrossRef D.B. Adolf, R.S. Chambers, J. Flemming, J. Budzien and J.McCoy, “Potential Energy Clock Model: Justification and Challenging Predictions,” J. Rheol., 51, 517–540 (2007).CrossRef
97.
Zurück zum Zitat P.A. O’Connell and G.B. McKenna, “Large Deformation Response of Polycarbonate: Time-Temperature, Time-Aging Time, and Time-Strain Superposition,” Polymer Engineering and Science, 37, 1485–1495 (1997).CrossRef P.A. O’Connell and G.B. McKenna, “Large Deformation Response of Polycarbonate: Time-Temperature, Time-Aging Time, and Time-Strain Superposition,” Polymer Engineering and Science, 37, 1485–1495 (1997).CrossRef
98.
Zurück zum Zitat A.Lee and G.B. McKenna, “Effect of Crosslink Density on Physical Aging of Epoxy Networks,” Polymer, 29, 1812–1817 (1988).CrossRef A.Lee and G.B. McKenna, “Effect of Crosslink Density on Physical Aging of Epoxy Networks,” Polymer, 29, 1812–1817 (1988).CrossRef
99.
Zurück zum Zitat P.A. O’Connell and G.B. McKenna, “Arrhenius like Temperature Dependence of the Segmental Relaxation below Tg,” Journal of Chemical Physics, 110, 11054–11060 (1999).CrossRef P.A. O’Connell and G.B. McKenna, “Arrhenius like Temperature Dependence of the Segmental Relaxation below Tg,” Journal of Chemical Physics, 110, 11054–11060 (1999).CrossRef
100.
Zurück zum Zitat G.B. McKenna, “Mechanical Rejuvenation in Polymer Glasses: Fact or Fallacy?,” J. Phys.: Condens. Matter, 15, S737–S763 (2003).CrossRef G.B. McKenna, “Mechanical Rejuvenation in Polymer Glasses: Fact or Fallacy?,” J. Phys.: Condens. Matter, 15, S737–S763 (2003).CrossRef
101.
Zurück zum Zitat S. Matsuoka, S.J. Aloisio and H.E. Bair, “Interpretation of shift of relaxation time with deformation in glassy polymers in terms of excess enthalpy,” J. Appl. Phys., 44, 4265–4268 (1973).CrossRef S. Matsuoka, S.J. Aloisio and H.E. Bair, “Interpretation of shift of relaxation time with deformation in glassy polymers in terms of excess enthalpy,” J. Appl. Phys., 44, 4265–4268 (1973).CrossRef
102.
Zurück zum Zitat R.A. Schapery, Polym. Eng. Sci.,”Characterization of nonlinear viscoelastic materials,” 9, 295–310 (1969).CrossRef R.A. Schapery, Polym. Eng. Sci.,”Characterization of nonlinear viscoelastic materials,” 9, 295–310 (1969).CrossRef
103.
Zurück zum Zitat Y.C. Lou and R.A. Schapery, J. Comp. Matls., “Viscoelastic characterization of a nonlinear fiber-reinforced plastic,” 5, 208–234 (1971).CrossRef Y.C. Lou and R.A. Schapery, J. Comp. Matls., “Viscoelastic characterization of a nonlinear fiber-reinforced plastic,” 5, 208–234 (1971).CrossRef
104.
Zurück zum Zitat B. Bernstein and A. Shokooh, “The Stress Clock Function in Viscoelasticity,” J. Rheol., 24, 189–211 (1980).CrossRef B. Bernstein and A. Shokooh, “The Stress Clock Function in Viscoelasticity,” J. Rheol., 24, 189–211 (1980).CrossRef
105.
Zurück zum Zitat T.A. Tervoort, E.T. J. Klompen and L.E. Govaert, “A multi-mode approach to finite, three-dimensional, nonlinear viscoelastic behavior of polymer glasses,” J. Rheol., 40, 779–797 (1996).CrossRef T.A. Tervoort, E.T. J. Klompen and L.E. Govaert, “A multi-mode approach to finite, three-dimensional, nonlinear viscoelastic behavior of polymer glasses,” J. Rheol., 40, 779–797 (1996).CrossRef
106.
Zurück zum Zitat J.-J. Pesce and G. B. McKenna, “Prediction of the Sub-Yield Extension and Compression Responses of Glassy Polycarbonate from Torsional Measurements,” J. Rheology, 41, 929–942 (1997).CrossRef J.-J. Pesce and G. B. McKenna, “Prediction of the Sub-Yield Extension and Compression Responses of Glassy Polycarbonate from Torsional Measurements,” J. Rheology, 41, 929–942 (1997).CrossRef
107.
Zurück zum Zitat S. Jazouli, W.B. Luo, F. Bremand and T. Vu-Khanh,“ Application of time-stress equivalence to nonlinear creep of polycarbonate,” Polymer Testing, 24, 463–467 (2005).CrossRef S. Jazouli, W.B. Luo, F. Bremand and T. Vu-Khanh,“ Application of time-stress equivalence to nonlinear creep of polycarbonate,” Polymer Testing, 24, 463–467 (2005).CrossRef
108.
Zurück zum Zitat A. Lee and G.B. McKenna,, "The Physical Aging Response of an Epoxy Glass Subjected to Large Stresses," Polymer, 31, 423–430 (1990).CrossRef A. Lee and G.B. McKenna,, "The Physical Aging Response of an Epoxy Glass Subjected to Large Stresses," Polymer, 31, 423–430 (1990).CrossRef
109.
Zurück zum Zitat C.G’Sell and G.B. McKenna,, “Influence of Physical Aging on the Yield Behavior of Model DGEBA/Poly(propylene oxide) Epoxy Glasses,” Polymer, 33, 2103–2113 (1992).CrossRef C.G’Sell and G.B. McKenna,, “Influence of Physical Aging on the Yield Behavior of Model DGEBA/Poly(propylene oxide) Epoxy Glasses,” Polymer, 33, 2103–2113 (1992).CrossRef
110.
Zurück zum Zitat M. Aboulfaraj, C. G'Sell, D. Mangelinck, and G.B. McKenna, "Physical Aging of Epoxy Networks after Quenching and/or Plastic Cycling," J. Non-Crystalline Solids, 172–174, 615–621 (1994).CrossRef M. Aboulfaraj, C. G'Sell, D. Mangelinck, and G.B. McKenna, "Physical Aging of Epoxy Networks after Quenching and/or Plastic Cycling," J. Non-Crystalline Solids, 172174, 615–621 (1994).CrossRef
111.
Zurück zum Zitat C.H. Huu and T. Vu-Khanh, “Effects of physical aging on yielding kinetics of polycarbonate,” Theoretical and Applied Fracture Mechanics, 40, 75–83 (2003).CrossRef C.H. Huu and T. Vu-Khanh, “Effects of physical aging on yielding kinetics of polycarbonate,” Theoretical and Applied Fracture Mechanics, 40, 75–83 (2003).CrossRef
112.
Zurück zum Zitat J.M. Hutchinson, S. Smith, B. Horne and G.M. Gourlay, “Physical aging of polycarbonate: Enthalpy relaxation, creep response, and yielding behavior,” Macromolecules, 32, 5046–5061 (1999).CrossRef J.M. Hutchinson, S. Smith, B. Horne and G.M. Gourlay, “Physical aging of polycarbonate: Enthalpy relaxation, creep response, and yielding behavior,” Macromolecules, 32, 5046–5061 (1999).CrossRef
113.
Zurück zum Zitat M. Aboulfaraj, C. G'Sell, D. Mangelinck, and G.B. McKenna, “Physical Aging of Epoxy Networks after Quenching and/or Plastic Cycling,” J. Non-Crystalline Solids, 172–174, 615–621 (1994).CrossRef M. Aboulfaraj, C. G'Sell, D. Mangelinck, and G.B. McKenna, “Physical Aging of Epoxy Networks after Quenching and/or Plastic Cycling,” J. Non-Crystalline Solids, 172174, 615–621 (1994).CrossRef
114.
Zurück zum Zitat C.G. Robertson, J.E. Monat and G.L. Wilkes, “Physical aging of an amorphous polyimide: Enthalpy relaxation and mechanical property changes,” J. Polym. Sci. Part B: Polymer Physics, 37, 1931–1946 (1999).CrossRef C.G. Robertson, J.E. Monat and G.L. Wilkes, “Physical aging of an amorphous polyimide: Enthalpy relaxation and mechanical property changes,” J. Polym. Sci. Part B: Polymer Physics, 37, 1931–1946 (1999).CrossRef
115.
Zurück zum Zitat R. Song R, J. Chen, J.G. Gao, S. Lin and Q.R. Fan, “The effect of physical aging on the properties of atactic polystyrene,” Acta Polymerica Sinica, 1, 61–66 (1998). R. Song R, J. Chen, J.G. Gao, S. Lin and Q.R. Fan, “The effect of physical aging on the properties of atactic polystyrene,” Acta Polymerica Sinica, 1, 61–66 (1998).
116.
Zurück zum Zitat L. Teze, J.L. Halary, L. Monnerie and L. Canova, “On the viscoelastic and plastic behaviour of methylmethacrylate-co-N-methylglutarimide copolymers,” Polymer, 40, 971–981 (1999).CrossRef L. Teze, J.L. Halary, L. Monnerie and L. Canova, “On the viscoelastic and plastic behaviour of methylmethacrylate-co-N-methylglutarimide copolymers,” Polymer, 40, 971–981 (1999).CrossRef
117.
Zurück zum Zitat J.P. Armistead and A.W. Snow, “Influence of matrix properties on fragmentation test,” J. Adhesion, 1–4, 209–222 (1995).CrossRef J.P. Armistead and A.W. Snow, “Influence of matrix properties on fragmentation test,” J. Adhesion, 14, 209–222 (1995).CrossRef
118.
Zurück zum Zitat T.S. Chow, “Stress-Strain Behavior of Physically Aging Polymers,” Polymer, 34, 541–545 (1993).CrossRef T.S. Chow, “Stress-Strain Behavior of Physically Aging Polymers,” Polymer, 34, 541–545 (1993).CrossRef
119.
Zurück zum Zitat B. Haidar and T.L. Smith, “History-dependent and temperature-dependent yield phenomena of polycarbonate related to its rate of physical aging,” Polymer, 32, 2594–2600 (1991).CrossRef B. Haidar and T.L. Smith, “History-dependent and temperature-dependent yield phenomena of polycarbonate related to its rate of physical aging,” Polymer, 32, 2594–2600 (1991).CrossRef
120.
Zurück zum Zitat W.H. Jo and K.J. Ko, “The effects of physical aging on the thermal and mechanical-properties of an epoxy polymer,” Polym. Eng. Sci., 31, 239–244 (1991).CrossRef W.H. Jo and K.J. Ko, “The effects of physical aging on the thermal and mechanical-properties of an epoxy polymer,” Polym. Eng. Sci., 31, 239–244 (1991).CrossRef
121.
Zurück zum Zitat O.A. Hasan, M.C. Boyce, X.S. Li and S. Berko, “An investigation of the yield and post-yield behavior and corresponding structure of poly(methyl methacrylate),” J. Polym. Sci. Part B: Polymer Physics, 31, 186–197 (1993).CrossRef O.A. Hasan, M.C. Boyce, X.S. Li and S. Berko, “An investigation of the yield and post-yield behavior and corresponding structure of poly(methyl methacrylate),” J. Polym. Sci. Part B: Polymer Physics, 31, 186–197 (1993).CrossRef
122.
Zurück zum Zitat R.A. Bubeck, S.E. Bales and H.D. Lee, “Changes in yield and deformation of polycarbonates caused by physical aging,” Polym. Eng. Sci., 24, 1142–1148 (1984).CrossRef R.A. Bubeck, S.E. Bales and H.D. Lee, “Changes in yield and deformation of polycarbonates caused by physical aging,” Polym. Eng. Sci., 24, 1142–1148 (1984).CrossRef
123.
Zurück zum Zitat C. Bauwens-Crowet and J.C. Bauwens, “Annealing of polycarbonate below the glass transition-Quantitative interpretation of the effect on yield stress and differential scanning calorimetry measurements,” Polymer, 23, 1599–1604 (1982).CrossRef C. Bauwens-Crowet and J.C. Bauwens, “Annealing of polycarbonate below the glass transition-Quantitative interpretation of the effect on yield stress and differential scanning calorimetry measurements,” Polymer, 23, 1599–1604 (1982).CrossRef
124.
Zurück zum Zitat C. Bauwens-Crowet and J.P. Bauwens, “Effect of thermal history on the tensile yield stress of polycarbonate in the beta-transition range,” Polymer, 24, 921–924 (1983).CrossRef C. Bauwens-Crowet and J.P. Bauwens, “Effect of thermal history on the tensile yield stress of polycarbonate in the beta-transition range,” Polymer, 24, 921–924 (1983).CrossRef
125.
Zurück zum Zitat J.J. Martinez-Vega, H. Trumel and J. L. Gacougnolle, “Plastic deformation and physical ageing in PMMA,” Polymer, 43, 4979–4987 (2002).CrossRef J.J. Martinez-Vega, H. Trumel and J. L. Gacougnolle, “Plastic deformation and physical ageing in PMMA,” Polymer, 43, 4979–4987 (2002).CrossRef
126.
Zurück zum Zitat W.D. Cook, M. Mehrabi and G.H. Edward, “Ageing and Yielding in Model Epoxy Thermosets,” Polymer, 40, 1209–1218 (1999).CrossRef W.D. Cook, M. Mehrabi and G.H. Edward, “Ageing and Yielding in Model Epoxy Thermosets,” Polymer, 40, 1209–1218 (1999).CrossRef
127.
Zurück zum Zitat E.T.J. Klompen, T.A.P. Engels, L.E. Govaert and H.E.H. Meijer, “Modeling of the postyield response of glassy polymers: Influence of thermomechanical history,” Macromolecules, 38, 6997–7008 (2005).CrossRef E.T.J. Klompen, T.A.P. Engels, L.E. Govaert and H.E.H. Meijer, “Modeling of the postyield response of glassy polymers: Influence of thermomechanical history,” Macromolecules, 38, 6997–7008 (2005).CrossRef
128.
Zurück zum Zitat T.A. Tervoort and L.E. Govaert, “Strain-hardening behavior of polycarbonate in the glassy state“, J. Rheol., 44, 1263–1277 (2000).CrossRef T.A. Tervoort and L.E. Govaert, “Strain-hardening behavior of polycarbonate in the glassy state“, J. Rheol., 44, 1263–1277 (2000).CrossRef
129.
Zurück zum Zitat T.A. Tervoort, R.J.M. Smit, W.A.M. Brekelmans and L.E. Govaert, “A constitutive equation for the elasto-viscoplastic deformation of glassy polymers,” Mech. Time-Dep. Materials, 1, 269–291 (1998).CrossRef T.A. Tervoort, R.J.M. Smit, W.A.M. Brekelmans and L.E. Govaert, “A constitutive equation for the elasto-viscoplastic deformation of glassy polymers,” Mech. Time-Dep. Materials, 1, 269–291 (1998).CrossRef
130.
Zurück zum Zitat L.E. Govaert, P.H.M. Timmermans, W.A.M. Brekelmans, “The influence of intrinsic strain softening on strain localization in polycarbonate: Modeling and experimental validation” J. Eng. Mater. Techn., 122, 177–185 (2000).CrossRef L.E. Govaert, P.H.M. Timmermans, W.A.M. Brekelmans, “The influence of intrinsic strain softening on strain localization in polycarbonate: Modeling and experimental validation” J. Eng. Mater. Techn., 122, 177–185 (2000).CrossRef
131.
Zurück zum Zitat O.A. Hasan, M.C. Boyce, X.S. Li and S. Berko, “An investigation of the yield and post-yield behavior and corresponding structure of poly(methyl methacrylate),” J. Polym. Sci. Part B: Polymer Physics, 31, 185–197 (1993).CrossRef O.A. Hasan, M.C. Boyce, X.S. Li and S. Berko, “An investigation of the yield and post-yield behavior and corresponding structure of poly(methyl methacrylate),” J. Polym. Sci. Part B: Polymer Physics, 31, 185–197 (1993).CrossRef
132.
Zurück zum Zitat B.A. Isner and D.J. Lacks, “Generic Rugged Landscapes under Strain and the Possibility of Rejuvenation in Glasses,” Phys. Rev. Lett., 96, 025506–1 – 025506–4 (2006).CrossRef B.A. Isner and D.J. Lacks, “Generic Rugged Landscapes under Strain and the Possibility of Rejuvenation in Glasses,” Phys. Rev. Lett., 96, 025506–1 – 025506–4 (2006).CrossRef
133.
Zurück zum Zitat G.B. McKenna and A.J.Kovacs, “Physical Ageing of Poly(methyl methacrylate) in the Nonlinear Range: Torque and Normal Force Measurements,” Polym. Eng. and Sci., 24, 1138-1141 (1984).CrossRef G.B. McKenna and A.J.Kovacs, “Physical Ageing of Poly(methyl methacrylate) in the Nonlinear Range: Torque and Normal Force Measurements,” Polym. Eng. and Sci., 24, 1138-1141 (1984).CrossRef
134.
Zurück zum Zitat H.G.H. van Melick, L.E. Govaert, B. Raas, W.J. Nauta and H.E.H. Meijer, “Kinetics of ageing and re-embrittlement of mechanically rejuvenated polystyrene,” Polymer, 44, 1171–1179 (2003).CrossRef H.G.H. van Melick, L.E. Govaert, B. Raas, W.J. Nauta and H.E.H. Meijer, “Kinetics of ageing and re-embrittlement of mechanically rejuvenated polystyrene,” Polymer, 44, 1171–1179 (2003).CrossRef
135.
Zurück zum Zitat H.E.H. Meijer and L.E. Govaert, “Mechanical performance of polymer systems: The relation between structure and properties,” Prog. Polym. Sci., 30, 915–938 (2005).CrossRef H.E.H. Meijer and L.E. Govaert, “Mechanical performance of polymer systems: The relation between structure and properties,” Prog. Polym. Sci., 30, 915–938 (2005).CrossRef
136.
Zurück zum Zitat T.A.P. Engels, L.C.A. van Breemen, L.E. Govaert and H.E.H. Meijer, “Predicting the long-term mechanical performance of polycarbonate from thermal history during injection molding,” Marcomolecular Materials and Engineering, 294, 829–838 (2009). T.A.P. Engels, L.C.A. van Breemen, L.E. Govaert and H.E.H. Meijer, “Predicting the long-term mechanical performance of polycarbonate from thermal history during injection molding,” Marcomolecular Materials and Engineering, 294, 829–838 (2009).
137.
Zurück zum Zitat R. P.M. Janssen, D. de Kanter, L.E. Govaert and H.E.H. Meijer, “Fatigue life predictions for glassy polymers: A constitutive approach,” Macromolecules, 41, 2520–2530 (2008).CrossRef R. P.M. Janssen, D. de Kanter, L.E. Govaert and H.E.H. Meijer, “Fatigue life predictions for glassy polymers: A constitutive approach,” Macromolecules, 41, 2520–2530 (2008).CrossRef
138.
Zurück zum Zitat L.B. Liu, D. Gidley and A.F. Yee, “Effect of cyclic stress on structural changes in polycarbonate as probed by positron-annihilation lifetime spectroscopy,” J. Polym. Sci. Part B: Polymer Physics, 30, 230–238 (1992). L.B. Liu, D. Gidley and A.F. Yee, “Effect of cyclic stress on structural changes in polycarbonate as probed by positron-annihilation lifetime spectroscopy,” J. Polym. Sci. Part B: Polymer Physics, 30, 230–238 (1992).
139.
Zurück zum Zitat D.M. Colucci, P.A O'Connell and G.B. McKenna, “Stress Relaxation Experiments in Polycarbonate: A Comparison of Volume Changes for Two Commercial Grades,” Polymer Engineering and Science, 37, 1469–1474 (1997).CrossRef D.M. Colucci, P.A O'Connell and G.B. McKenna, “Stress Relaxation Experiments in Polycarbonate: A Comparison of Volume Changes for Two Commercial Grades,” Polymer Engineering and Science, 37, 1469–1474 (1997).CrossRef
140.
Zurück zum Zitat J.M. Crissman and G.B. McKenna,“Relating Creep and Creep Rupture in PMMA Using a Reduced Variables Approach,” J. Polym. Sci., Phys. Ed., 25, 1667–1677 (1987).CrossRef J.M. Crissman and G.B. McKenna,“Relating Creep and Creep Rupture in PMMA Using a Reduced Variables Approach,” J. Polym. Sci., Phys. Ed., 25, 1667–1677 (1987).CrossRef
141.
Zurück zum Zitat J.M. Crissman and G.B. McKenna, “Physical and Chemical Aging in PMMA and Their Effects on Creep and Creep Rupture Behavior,” J. Polymer Science, Phys. Ed., 28, 1463–1473 (1990).CrossRef J.M. Crissman and G.B. McKenna, “Physical and Chemical Aging in PMMA and Their Effects on Creep and Creep Rupture Behavior,” J. Polymer Science, Phys. Ed., 28, 1463–1473 (1990).CrossRef
142.
Zurück zum Zitat G.M. Gusler and G.B. McKenna, “The Craze Initiation Response of A Polystyrene and a Styrene-Acrylonitrile Copolymer During Physical Aging,” Polymer Engineering and Science, 37, 1442–1448 (1997).CrossRef G.M. Gusler and G.B. McKenna, “The Craze Initiation Response of A Polystyrene and a Styrene-Acrylonitrile Copolymer During Physical Aging,” Polymer Engineering and Science, 37, 1442–1448 (1997).CrossRef
143.
Zurück zum Zitat M. Delin and G.B. McKenna, “The Craze Growth Response in Stress Relaxation Conditions for a Styrene Acrylonitrile Copolymer During Physical Aging,” Mechanics of Time Dependent Materials, 4, 231–255 (2000).CrossRef M. Delin and G.B. McKenna, “The Craze Growth Response in Stress Relaxation Conditions for a Styrene Acrylonitrile Copolymer During Physical Aging,” Mechanics of Time Dependent Materials, 4, 231–255 (2000).CrossRef
144.
Zurück zum Zitat J.E. Lincoln, R.J. Morgan and E.E. Shin, “Effect of thermal history on the deformation and failure of polyimides,” J. Polym. Sci. Part B: Polymer Physics, 39, 2947–2959 (2001).CrossRef J.E. Lincoln, R.J. Morgan and E.E. Shin, “Effect of thermal history on the deformation and failure of polyimides,” J. Polym. Sci. Part B: Polymer Physics, 39, 2947–2959 (2001).CrossRef
145.
Zurück zum Zitat S. Sacks and W. S. Johnson, “Effects of thermal aging on the mechanical behavior of K3B matrix material,” J. Thermoplastic Composites, 11, 429–442 (1998). S. Sacks and W. S. Johnson, “Effects of thermal aging on the mechanical behavior of K3B matrix material,” J. Thermoplastic Composites, 11, 429–442 (1998).
146.
Zurück zum Zitat H. Parvatareddy, J.Z. Wang, D.A. Dillard, T.C. Ward and M.E. Rogalski, “Environmental aging of high performance polymeric composites-Effects on durability,” Composites Science and Technology, 53, 399-409 (1995).CrossRef H. Parvatareddy, J.Z. Wang, D.A. Dillard, T.C. Ward and M.E. Rogalski, “Environmental aging of high performance polymeric composites-Effects on durability,” Composites Science and Technology, 53, 399-409 (1995).CrossRef
147.
Zurück zum Zitat J.C. Arnold, “The effects of physical aging on the brittle-fracture behavior of polymers,” Polym. Eng. Sci., 35, 165–169 (1995).CrossRef J.C. Arnold, “The effects of physical aging on the brittle-fracture behavior of polymers,” Polym. Eng. Sci., 35, 165–169 (1995).CrossRef
148.
Zurück zum Zitat J.C. Arnold, “The influence of physical aging on the creep-rupture behavior of polystyrene,” J. Polym. Sci. Part B: Polymer Physics, 31, 1451–1458 (1993).CrossRef J.C. Arnold, “The influence of physical aging on the creep-rupture behavior of polystyrene,” J. Polym. Sci. Part B: Polymer Physics, 31, 1451–1458 (1993).CrossRef
149.
Zurück zum Zitat V.T. Truong and B.C. Ennis, “Effect of physical aging on the fracture-behavior of cross-linked epoxies,” Polym. Eng. Sci., 31, 548–557 (1991).CrossRef V.T. Truong and B.C. Ennis, “Effect of physical aging on the fracture-behavior of cross-linked epoxies,” Polym. Eng. Sci., 31, 548557 (1991).CrossRef
150.
Zurück zum Zitat Y. Zheng, R.D. Priestley and G.B. McKenna, “Physical Aging of an Epoxy Subsequent to Relative Humidity Jumps through the Glass Concentration,” J. Polym. Sci., B: Polym.Phys.,42, 2107–2121 (2004).CrossRef Y. Zheng, R.D. Priestley and G.B. McKenna, “Physical Aging of an Epoxy Subsequent to Relative Humidity Jumps through the Glass Concentration,” J. Polym. Sci., B: Polym.Phys.,42, 2107–2121 (2004).CrossRef
151.
Zurück zum Zitat M. Alcoutlabi, F. Briatico-Vangosa and G.B. McKenna, “Effect of Chemical Activity Jumps on the Viscoelastic Behavior of an Epoxy Resin: The Physical Aging Response in Carbon Dioxide Pressure-Jumps,” J. Polym. Sci., Part B: Polymer Physics, 40, 2050–2064 (2002).CrossRef M. Alcoutlabi, F. Briatico-Vangosa and G.B. McKenna, “Effect of Chemical Activity Jumps on the Viscoelastic Behavior of an Epoxy Resin: The Physical Aging Response in Carbon Dioxide Pressure-Jumps,” J. Polym. Sci., Part B: Polymer Physics, 40, 2050–2064 (2002).CrossRef
152.
Zurück zum Zitat M. Alcoutlabi, L. Banda, G. B. McKenna, "A Comparison of Concentration-Glasses and Temperature-Hyperquenched Glasses: CO2-Formed Glass vs. Temperature-Formed Glass," Polymer, 45, 5629–5634 (2004).CrossRef M. Alcoutlabi, L. Banda, G. B. McKenna, "A Comparison of Concentration-Glasses and Temperature-Hyperquenched Glasses: CO2-Formed Glass vs. Temperature-Formed Glass," Polymer, 45, 5629–5634 (2004).CrossRef
153.
Zurück zum Zitat G.B. McKenna, “Glassy States: Concentration Glasses and Temperature Glasses Compared,” J. Non-Crystalline Solids, 353, 3820–3828 (2007).CrossRef G.B. McKenna, “Glassy States: Concentration Glasses and Temperature Glasses Compared,” J. Non-Crystalline Solids, 353, 3820–3828 (2007).CrossRef
154.
Zurück zum Zitat Y. Zheng, Effects of Moisture on the Dimensional and Viscoelastic Properties of Glassy Polymers, Ph.D. Thesis, Department of Chemical Engineering, Texas Tech University, Lubbock, TX (2003). Y. Zheng, Effects of Moisture on the Dimensional and Viscoelastic Properties of Glassy Polymers, Ph.D. Thesis, Department of Chemical Engineering, Texas Tech University, Lubbock, TX (2003).
155.
Zurück zum Zitat S.F. Swallen, K.L. Kearns, M.K. Mapes, Y.S. Kim, R.J. McMahon, M.D. Ediger, T. Wu, L. Yu and S. Satija, “Organic glasses with exceptional thermodynamic and kinetic stability,” Science, 315, 353–356 (2007).CrossRef S.F. Swallen, K.L. Kearns, M.K. Mapes, Y.S. Kim, R.J. McMahon, M.D. Ediger, T. Wu, L. Yu and S. Satija, “Organic glasses with exceptional thermodynamic and kinetic stability,” Science, 315, 353–356 (2007).CrossRef
156.
Zurück zum Zitat G.B. McKenna, C.L. Jackson, J.M. O'Reilly, and J. S. Sedita "Kinetics of Enthalpy Recovery near the Glass Transition of Small Molecule Glasses at Nanometer Size Scales,"Polymer Preprints, 33(1),118–119 (1992). G.B. McKenna, C.L. Jackson, J.M. O'Reilly, and J. S. Sedita "Kinetics of Enthalpy Recovery near the Glass Transition of Small Molecule Glasses at Nanometer Size Scales,"Polymer Preprints, 33(1),118–119 (1992).
157.
Zurück zum Zitat S. L. Simon, J.-Y. Park and G. B. McKenna, "Enthalpy Recovery of a Glass-Forming Liquid Constrained in a Nanoporous Matrix: Negative Pressure Effects," European Physical Journal E: Soft Matter, 8, 209–216 (2002).CrossRef S. L. Simon, J.-Y. Park and G. B. McKenna, "Enthalpy Recovery of a Glass-Forming Liquid Constrained in a Nanoporous Matrix: Negative Pressure Effects," European Physical Journal E: Soft Matter, 8, 209–216 (2002).CrossRef
158.
Zurück zum Zitat J.Y. Park and G.B. McKenna, “Size and Confinement Effects on the Glass Transition Behavior of oTP/PS Polymer Solutions,” Physical Review B, 61, 6667–6676 (2000).CrossRef J.Y. Park and G.B. McKenna, “Size and Confinement Effects on the Glass Transition Behavior of oTP/PS Polymer Solutions,” Physical Review B, 61, 6667–6676 (2000).CrossRef
159.
Zurück zum Zitat S. Kawana and R.A.L. Jones, “Effect of physical aging in thin glassy polymer films,” Eur. Phys. J. E, 10, 223–230 (2003).CrossRef S. Kawana and R.A.L. Jones, “Effect of physical aging in thin glassy polymer films,” Eur. Phys. J. E, 10, 223–230 (2003).CrossRef
160.
Zurück zum Zitat R.D. Priestley, C.J. Ellison, L.J. Broadbelt and J.M. Torkelson, “Structural relaxation of polymer glasses at surfaces, interfaces and in between,” Science, 309, 456–459 (2005).CrossRef R.D. Priestley, C.J. Ellison, L.J. Broadbelt and J.M. Torkelson, “Structural relaxation of polymer glasses at surfaces, interfaces and in between,” Science, 309, 456–459 (2005).CrossRef
161.
Zurück zum Zitat R.D. Priestley, L.J. Broadbelt and J.M. Torkelson, “Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: Effects of attractive vs neutral polymer-substrate interactions measured by fluorescence,” Macromolecules, 38, 654–657 (2005).CrossRef R.D. Priestley, L.J. Broadbelt and J.M. Torkelson, “Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: Effects of attractive vs neutral polymer-substrate interactions measured by fluorescence,” Macromolecules, 38, 654–657 (2005).CrossRef
162.
Zurück zum Zitat C.J. Ellison and J.M. Torkelson, “The distribution of glass-transition temperatures in nanoscopically confined glass formers,” Nature Materials, 2, 695–700 (2003).CrossRef C.J. Ellison and J.M. Torkelson, “The distribution of glass-transition temperatures in nanoscopically confined glass formers,” Nature Materials, 2, 695–700 (2003).CrossRef
163.
Zurück zum Zitat M.K. Mundra, C.J. Ellison, R.E. Behling and J.M. Torkelson, “Confinement, composition and spin coating effects on the glass transition and stress relaxation of thin films of polystyrene and styrene containing random copolymers: Sensing by intrinsic fluorescence,” Polymer, 47, 7747–7759 (2006).CrossRef M.K. Mundra, C.J. Ellison, R.E. Behling and J.M. Torkelson, “Confinement, composition and spin coating effects on the glass transition and stress relaxation of thin films of polystyrene and styrene containing random copolymers: Sensing by intrinsic fluorescence,” Polymer, 47, 7747–7759 (2006).CrossRef
164.
Zurück zum Zitat R.D. Priestley, L.J. Broadbelt, J. M. Torkelson and K. Fukao, “Glass transition and β-relaxation of labeled polystyrene,” Phys. Rev. E., 75, 061806–1 – 061806–10 (2007).CrossRef R.D. Priestley, L.J. Broadbelt, J. M. Torkelson and K. Fukao, “Glass transition and β-relaxation of labeled polystyrene,” Phys. Rev. E., 75, 061806–1 – 061806–10 (2007).CrossRef
165.
Zurück zum Zitat R.D. Priestley, P. Rittigstein, L.J. Broadbelt, K. Fukao and J.M. Torkelson, “Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: Fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites,” J. Phys.: Condens. Matter, 19, 205120–1 – 205120–12 (2007).CrossRef R.D. Priestley, P. Rittigstein, L.J. Broadbelt, K. Fukao and J.M. Torkelson, “Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: Fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites,” J. Phys.: Condens. Matter, 19, 205120–1 – 205120–12 (2007).CrossRef
166.
Zurück zum Zitat P.H. Pfromm and W.J. Koros, “Accelerated physical aging of thin glassy polymer-films-Evidence from gas- transport measurements,” Polymer, 36, 2379–2387 (1995).CrossRef P.H. Pfromm and W.J. Koros, “Accelerated physical aging of thin glassy polymer-films-Evidence from gas- transport measurements,” Polymer, 36, 2379–2387 (1995).CrossRef
167.
Zurück zum Zitat Y. Huang and D.R. Paul, “Effect of film thickness on the gas-permeation characteristics of glassy polymer membranes,” Ind. Eng. Chem. Res., 46, 2342–2347 (2007).CrossRef Y. Huang and D.R. Paul, “Effect of film thickness on the gas-permeation characteristics of glassy polymer membranes,” Ind. Eng. Chem. Res., 46, 2342–2347 (2007).CrossRef
168.
Zurück zum Zitat M. S. McCaig, D.R. Paul and J.W. Barlow, “Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging. Part II. Mathematical model,” Polymer, 41, 639–648 (2000).CrossRef M. S. McCaig, D.R. Paul and J.W. Barlow, “Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging. Part II. Mathematical model,” Polymer, 41, 639–648 (2000).CrossRef
169.
Zurück zum Zitat Y. Huang and D.R. Paul, Effect of temperature on physical aging of thin glassy polymer films,” Macromolecules, 38, 10148–10154 (2005).CrossRef Y. Huang and D.R. Paul, Effect of temperature on physical aging of thin glassy polymer films,” Macromolecules, 38, 10148–10154 (2005).CrossRef
170.
Zurück zum Zitat Y. Huang and D.R. Paul, “Effect of molecular weight and temperature on physical aging of thin glassy poly(2,6-dimethyl-1,4-phenylene oxide) films,” J. Polym. Sci. Part B: Polym. Physics, 45, 1390–1398 (2007).CrossRef Y. Huang and D.R. Paul, “Effect of molecular weight and temperature on physical aging of thin glassy poly(2,6-dimethyl-1,4-phenylene oxide) films,” J. Polym. Sci. Part B: Polym. Physics, 45, 1390–1398 (2007).CrossRef
171.
Zurück zum Zitat K.D. Dorkenoo and P.H. Pfromm, “Experimental evidence and theoretical analysis of physical aging in thin and thick amorphous glassy polymer films,” J. Polym. Sci. Part B: Polym. Physics, 37, 2239–2251 (1999).CrossRef K.D. Dorkenoo and P.H. Pfromm, “Experimental evidence and theoretical analysis of physical aging in thin and thick amorphous glassy polymer films,” J. Polym. Sci. Part B: Polym. Physics, 37, 2239–2251 (1999).CrossRef
172.
Zurück zum Zitat K.D. Dorkenoo and P.H. Pfromm, “Accelerated Physical Aging of Thin Poly[1-(trimethylsilyl)-1-propyne] Films,” Macromolecules, 33, 3747–3751 (2000).CrossRef K.D. Dorkenoo and P.H. Pfromm, “Accelerated Physical Aging of Thin Poly[1-(trimethylsilyl)-1-propyne] Films,” Macromolecules, 33, 3747–3751 (2000).CrossRef
173.
Zurück zum Zitat G. Braun and A.J. Kovacs, “Glass transition in powdered polystyrene,” Phys. Chem. Glasses, 4,1152–160 (1963). G. Braun and A.J. Kovacs, “Glass transition in powdered polystyrene,” Phys. Chem. Glasses, 4,1152–160 (1963).
174.
Zurück zum Zitat Y.P. Koh and S.L. Simon, Structural Relaxation of Stacked Ultrathin Polystyrene Films,” Journal of Polymer Science: Part B: Polymer Physics, 46, 2741–2753 (2008).CrossRef Y.P. Koh and S.L. Simon, Structural Relaxation of Stacked Ultrathin Polystyrene Films,” Journal of Polymer Science: Part B: Polymer Physics, 46, 2741–2753 (2008).CrossRef
175.
Zurück zum Zitat K. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault and J.R. Dutcher, “Molecular weight dependence of the reduction in the glass transiiton temperature of thin, freely-standing polymer films,” Phys. Rev. E., 63, 031801–1 -13801-10 (2001).CrossRef K. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault and J.R. Dutcher, “Molecular weight dependence of the reduction in the glass transiiton temperature of thin, freely-standing polymer films,” Phys. Rev. E., 63, 031801–1 -13801-10 (2001).CrossRef
176.
Zurück zum Zitat J.L. Sullivan, E.J. Blais and D. Houston, “Physical aging and the creep behavior of thermosetting and thermoplastic composites,” Composites Science and Technology, 47, 389–403 (1993).CrossRef J.L. Sullivan, E.J. Blais and D. Houston, “Physical aging and the creep behavior of thermosetting and thermoplastic composites,” Composites Science and Technology, 47, 389–403 (1993).CrossRef
177.
Zurück zum Zitat J.L. Sullivan, “Creep and physical aging of composites,” Composites Science and Technology, 39, 207–232 (1990).CrossRef J.L. Sullivan, “Creep and physical aging of composites,” Composites Science and Technology, 39, 207–232 (1990).CrossRef
178.
Zurück zum Zitat A. d’Amore, F. Cocchini, A. Pompo, A. Apicella and L. Nicolais, “The effects of physical aging on long- term properties of poly-ether-keton (PEEK) and PEEK-based composites,” J. Appl. Polym. Sci., 39, 1163–1174 (1990)CrossRef A. d’Amore, F. Cocchini, A. Pompo, A. Apicella and L. Nicolais, “The effects of physical aging on long- term properties of poly-ether-keton (PEEK) and PEEK-based composites,” J. Appl. Polym. Sci., 39, 1163–1174 (1990)CrossRef
179.
Zurück zum Zitat T.S. Gates, D.R. Veazie and L.C. Brinson, “Comparison of physical aging effects on the tension and compression creep of the IM7/K3B composite,” Proc. ASME Aerospace Division, AD-52, American Society of Mechanical Engineers, New York, pp. 361–365 (1996). T.S. Gates, D.R. Veazie and L.C. Brinson, “Comparison of physical aging effects on the tension and compression creep of the IM7/K3B composite,” Proc. ASME Aerospace Division, AD-52, American Society of Mechanical Engineers, New York, pp. 361–365 (1996).
180.
Zurück zum Zitat M.E. Nichols, S.S. Wang and P.H. Geil, “Creep and physical aging in a polyamideimide carbon fiber composite,” J. Macromol. Sci.-Physics, B29, 303–336 (1990).CrossRef M.E. Nichols, S.S. Wang and P.H. Geil, “Creep and physical aging in a polyamideimide carbon fiber composite,” J. Macromol. Sci.-Physics, B29, 303–336 (1990).CrossRef
181.
Zurück zum Zitat T.S. Gates, D.R. Veazie and L.C. Brinson, “Creep and Physical Aging in a Polymeric Composite: Comparison of Tension and Compresssion,” J. Comp. Matls., 31, 2478–2505 (1997).CrossRef T.S. Gates, D.R. Veazie and L.C. Brinson, “Creep and Physical Aging in a Polymeric Composite: Comparison of Tension and Compresssion,” J. Comp. Matls., 31, 2478–2505 (1997).CrossRef
182.
Zurück zum Zitat R.D. Bradshaw and L.C. Brinson, “Physical Aging in Polymers and Polymer Composites: An Analysis and Method for Time-Aging Time Superposition,” Polym. Eng. Sci., 37, 31–44 (1997).CrossRef R.D. Bradshaw and L.C. Brinson, “Physical Aging in Polymers and Polymer Composites: An Analysis and Method for Time-Aging Time Superposition,” Polym. Eng. Sci., 37, 31–44 (1997).CrossRef
183.
Zurück zum Zitat J.Z. Wang, H. Pavatareddy, D.A. Dillard and G.L. Wilkes, “Studies on the physical aging behavior of cyanate ester resin and its graphite fiber composites,” Proc. ASME Symposium on Reliability, Stress Analysis, and Failure Prevention Aspects of Composite and Active Materials, DE-79, American Society of Mechanical Engineers, New York, pp.15-29 (1994). J.Z. Wang, H. Pavatareddy, D.A. Dillard and G.L. Wilkes, “Studies on the physical aging behavior of cyanate ester resin and its graphite fiber composites,” Proc. ASME Symposium on Reliability, Stress Analysis, and Failure Prevention Aspects of Composite and Active Materials, DE-79, American Society of Mechanical Engineers, New York, pp.15-29 (1994).
184.
Zurück zum Zitat E.S. Kong, S.M. Lee and H.G. Nelson, “Physical Aging in Graphite/Epoxy Composites,” Polymer Composites, 3, 29–33 (1982).CrossRef E.S. Kong, S.M. Lee and H.G. Nelson, “Physical Aging in Graphite/Epoxy Composites,” Polymer Composites, 3, 29–33 (1982).CrossRef
185.
Zurück zum Zitat H.W. Hu, “Physical aging in long term creep of polymeric composite laminates,” J. Mechanics, 23, 245–252 (2007).CrossRef H.W. Hu, “Physical aging in long term creep of polymeric composite laminates,” J. Mechanics, 23, 245–252 (2007).CrossRef
186.
Zurück zum Zitat H. Hu and C.T. Sun, “The characterization of physical aging in polymeric composites,” Composites Science and Technology,” 60, 2693–2698 (2000).CrossRef H. Hu and C.T. Sun, “The characterization of physical aging in polymeric composites,” Composites Science and Technology,” 60, 2693–2698 (2000).CrossRef
187.
Zurück zum Zitat W.G. Knauss and W. Zhu, “Nonlinearly viscoelastic behavior of polycarbonate. II. The role of volumetric strain,” Mech. Time Dependent Matls., 6, 301–322 (2002).CrossRef W.G. Knauss and W. Zhu, “Nonlinearly viscoelastic behavior of polycarbonate. II. The role of volumetric strain,” Mech. Time Dependent Matls., 6, 301–322 (2002).CrossRef
188.
Zurück zum Zitat I. Echeverria, P.L. Kolek, D.J. Plazek and S.L. Simon, “Enthalpy recovery, creep and creep-recovery measurements during physical aging of amorphous selenium,” J. Non-Crystalline Solids, 324, 242–255 (2003).CrossRef I. Echeverria, P.L. Kolek, D.J. Plazek and S.L. Simon, “Enthalpy recovery, creep and creep-recovery measurements during physical aging of amorphous selenium,” J. Non-Crystalline Solids, 324, 242–255 (2003).CrossRef
189.
Zurück zum Zitat P. Badrinarayanan and S.L. Simon, “Origin of the divergence of the timescales for volume and enthalpy recovery,” Polymer, 48, 1464–1470 (2007).CrossRef P. Badrinarayanan and S.L. Simon, “Origin of the divergence of the timescales for volume and enthalpy recovery,” Polymer, 48, 1464–1470 (2007).CrossRef
190.
Zurück zum Zitat S.L. Simon and G.B. McKenna, “Experimental evidence against the existence of an ideal glass transition,” J. Non-Crystalline Solids, 355, 672–675 (2009).CrossRef S.L. Simon and G.B. McKenna, “Experimental evidence against the existence of an ideal glass transition,” J. Non-Crystalline Solids, 355, 672–675 (2009).CrossRef
191.
Zurück zum Zitat P. Prasatya, G.B. McKenna and S.L. Simon,” A viscoelastic model for predicting isotropic residual stresses in thermosetting materials: Effects of processing parameters,” J. Composite Materials, 35, 826–848 (2001).CrossRef P. Prasatya, G.B. McKenna and S.L. Simon,” A viscoelastic model for predicting isotropic residual stresses in thermosetting materials: Effects of processing parameters,” J. Composite Materials, 35, 826–848 (2001).CrossRef
192.
Zurück zum Zitat Y.K. Kim and S.R. White, “Stress relaxation behavior of 3501–6 epoxy resin during cure,” Polym. Eng. Sci., 36, 2852–2862 (1996).CrossRef Y.K. Kim and S.R. White, “Stress relaxation behavior of 3501–6 epoxy resin during cure,” Polym. Eng. Sci., 36, 2852–2862 (1996).CrossRef
193.
Zurück zum Zitat D.J. Plazek and I.C. Chay, “The evolution of the viscoelastic retardation spectrum during the development of an epoxy-resin network,” J. Polym. Sci. Part B: Polymer Physics, 29, 17–29 (1991).CrossRef D.J. Plazek and I.C. Chay, “The evolution of the viscoelastic retardation spectrum during the development of an epoxy-resin network,” J. Polym. Sci. Part B: Polymer Physics, 29, 1729 (1991).CrossRef
194.
Zurück zum Zitat M. Alcoutlabi and G.B. McKenna, “Effects of Confinement on Material Behaviour at the Nanometre Size Scale,” J. Phys.: Condensed Matter, 17, R461-R524 (2005).CrossRef M. Alcoutlabi and G.B. McKenna, “Effects of Confinement on Material Behaviour at the Nanometre Size Scale,” J. Phys.: Condensed Matter, 17, R461-R524 (2005).CrossRef
195.
Zurück zum Zitat G.B. McKenna, “Confit III. Summary and perspectives on dynamics in confinement,” European Physical Journal Special Topics, 141, 291–300 (2007).CrossRef G.B. McKenna, “Confit III. Summary and perspectives on dynamics in confinement,” European Physical Journal Special Topics, 141, 291–300 (2007).CrossRef
196.
Zurück zum Zitat C.B. Roth and J.R. Dutcher, “Glass transition and chain mobility in thin polymer films,” J. Electroanalytical Chemistry, 584, 13–22 (2005).CrossRef C.B. Roth and J.R. Dutcher, “Glass transition and chain mobility in thin polymer films,” J. Electroanalytical Chemistry, 584, 13–22 (2005).CrossRef
197.
Zurück zum Zitat J.A. Forrest and K. Dalnoki-Veress, “The glass transition in thin polymer films,” Adv. in Coll. Interface. Sci., 94, 167–196 (2001).CrossRef J.A. Forrest and K. Dalnoki-Veress, “The glass transition in thin polymer films,” Adv. in Coll. Interface. Sci., 94, 167–196 (2001).CrossRef
198.
Zurück zum Zitat F. Varnik and J. Baschnagel, “Computer simulations of supercooled polymer melts in the bulk and in-confined geometry,” J. Phys.: Cond. Matter, 17, R851-R953 (2005).CrossRef F. Varnik and J. Baschnagel, “Computer simulations of supercooled polymer melts in the bulk and in-confined geometry,” J. Phys.: Cond. Matter, 17, R851-R953 (2005).CrossRef
199.
Zurück zum Zitat D.R. Paul and L.M. Robeson, “Polymer nanotechnology: Nanocomposites,” Polymer, 49, 3187–3204 (2008).CrossRef D.R. Paul and L.M. Robeson, “Polymer nanotechnology: Nanocomposites,” Polymer, 49, 3187–3204 (2008).CrossRef
200.
Zurück zum Zitat A.J. Crosby and J.Y. Lee, “Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties,” Polymer Reviews, 47, 217–229 (2007).CrossRef A.J. Crosby and J.Y. Lee, “Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties,” Polymer Reviews, 47, 217–229 (2007).CrossRef
201.
Zurück zum Zitat F. Fraga, M. Lopez, V.H. Soto Tellini, E. Rodriguez-Nunez, J.M. Martinez-Ageitos and J. Mirayaga, “Study of the physical aging of the epoxy system BADGE n = 0/m-XDA/CaCO3,“J. Appl. Polym. Sci., 113, 2456–2461 (2009).CrossRef F. Fraga, M. Lopez, V.H. Soto Tellini, E. Rodriguez-Nunez, J.M. Martinez-Ageitos and J. Mirayaga, “Study of the physical aging of the epoxy system BADGE n = 0/m-XDA/CaCO3,“J. Appl. Polym. Sci., 113, 2456–2461 (2009).CrossRef
202.
Zurück zum Zitat U. Yilmazer and R.J. Farris, “Physical aging in particulate-filled composites with an amorphous glassy matrix,” J. Appl. Polym. Sci., 28, 3269–3280 (1983).CrossRef U. Yilmazer and R.J. Farris, “Physical aging in particulate-filled composites with an amorphous glassy matrix,” J. Appl. Polym. Sci., 28, 3269–3280 (1983).CrossRef
203.
Zurück zum Zitat J. Menczel and B. Wunderlich, “Heat capacity hysteresis of semicrystalline macromolecular glasses,” J. Polym. Sci. Polym. Lett., 19, 261–264 (1981).CrossRef J. Menczel and B. Wunderlich, “Heat capacity hysteresis of semicrystalline macromolecular glasses,” J. Polym. Sci. Polym. Lett., 19, 261–264 (1981).CrossRef
204.
Zurück zum Zitat L.C.E. Struik, “The mechanical and physical aging of semicrystalline polymers.1.,” Polymer, 28,1521–1533 (1987).CrossRef L.C.E. Struik, “The mechanical and physical aging of semicrystalline polymers.1.,” Polymer, 28,1521–1533 (1987).CrossRef
205.
Zurück zum Zitat L.C.E. Struik, “The mechanical and physical aging of semicrystalline polymers.2.,” Polymer, 28,1534–1542 (1987).CrossRef L.C.E. Struik, “The mechanical and physical aging of semicrystalline polymers.2.,” Polymer, 28,1534–1542 (1987).CrossRef
206.
Zurück zum Zitat L.C.E. Struik, “Mechanical behavior and physical aging of semicrystalline polymers. 3. Prediction of long-term creep from short-time tests,” Polymer, 30, 799–814 (1989).CrossRef L.C.E. Struik, “Mechanical behavior and physical aging of semicrystalline polymers. 3. Prediction of long-term creep from short-time tests,” Polymer, 30, 799–814 (1989).CrossRef
207.
Zurück zum Zitat L.C.E. Struik, “Mechanical behavior and physical aging of semicrystalline polymers: 4,” Polymer, 30, 815–8830 (1989).CrossRef L.C.E. Struik, “Mechanical behavior and physical aging of semicrystalline polymers: 4,” Polymer, 30, 815–8830 (1989).CrossRef
208.
Zurück zum Zitat B. Wunderlich, “Glass transition of partially ordered macromolecules,” Prog. Coll. Polym. Sci., 96, 22–28 (1994).CrossRef B. Wunderlich, “Glass transition of partially ordered macromolecules,” Prog. Coll. Polym. Sci., 96, 22–28 (1994).CrossRef
209.
Zurück zum Zitat R.K. Krishnaswamy, J.F. Geibel and B.J.Lewis, “Influence of Semicrystalline Morphology on the Physical Aging Characteristics of Poly(phenylene sulfide),” Macromolecules, 36, 2907–2914 (2003).CrossRef R.K. Krishnaswamy, J.F. Geibel and B.J.Lewis, “Influence of Semicrystalline Morphology on the Physical Aging Characteristics of Poly(phenylene sulfide),” Macromolecules, 36, 2907–2914 (2003).CrossRef
210.
Zurück zum Zitat P. Huo and P. Cebe, “Effects of thermal history on the rigid amorphous phase in poly(phenylene sulfide), “Coll. Polym. Science, 270, 840–852 (1992).CrossRef P. Huo and P. Cebe, “Effects of thermal history on the rigid amorphous phase in poly(phenylene sulfide), “Coll. Polym. Science, 270, 840–852 (1992).CrossRef
211.
Zurück zum Zitat J. Beckmann, G.B. McKenna, B.G. Landes, D.H. Bank, and R.A. Bubeck, "Physical Aging Kinetics of Syndiotactic Polystyrene as Determined from Creep Behavior," Polymer Engineering and Science, 37, 1459–1468 (1997).CrossRef J. Beckmann, G.B. McKenna, B.G. Landes, D.H. Bank, and R.A. Bubeck, "Physical Aging Kinetics of Syndiotactic Polystyrene as Determined from Creep Behavior," Polymer Engineering and Science, 37, 1459–1468 (1997).CrossRef
212.
Zurück zum Zitat A.Y.H. Liu and J. Rottler, “Physical aging and structural recovery in nanocomposites,” J. Poly. Sci. Part B: Polymer Physics, 47,1789–1798 (2009).CrossRef A.Y.H. Liu and J. Rottler, “Physical aging and structural recovery in nanocomposites,” J. Poly. Sci. Part B: Polymer Physics, 47,1789–1798 (2009).CrossRef
213.
Zurück zum Zitat C. Thenau, M. Salmeron Sanchez, J.C. Rodriguez Hernandez, M. Monleon Pradas, J.M. Saiter and J.L. Gomez Ribelles, “The kinetics of the structural relaxation process in PHEMA-silica nanocomposites based on an equation for the configurational entropy,” Eur. Phys. J. E., 24, 69–77 (2007).CrossRef C. Thenau, M. Salmeron Sanchez, J.C. Rodriguez Hernandez, M. Monleon Pradas, J.M. Saiter and J.L. Gomez Ribelles, “The kinetics of the structural relaxation process in PHEMA-silica nanocomposites based on an equation for the configurational entropy,” Eur. Phys. J. E., 24, 69–77 (2007).CrossRef
214.
Zurück zum Zitat H. Lu and S. Nutt, “Enthalpy relaxation of layered silicate-epoxy nanocomposites,” Macromol. Chem. and Physics, 204, 1832–1841 (2003).CrossRef H. Lu and S. Nutt, “Enthalpy relaxation of layered silicate-epoxy nanocomposites,” Macromol. Chem. and Physics, 204, 1832–1841 (2003).CrossRef
215.
Zurück zum Zitat J.B. Donnet and A. Voet, Carbon Black: Physics, Chemistry and Elastomer Reinforcement,” Marcel Dekker, New York (1976). J.B. Donnet and A. Voet, Carbon Black: Physics, Chemistry and Elastomer Reinforcement,” Marcel Dekker, New York (1976).
216.
Zurück zum Zitat C.G. Robertson and C.M. Roland, “Glass transition and interfacial segmental dynamics in polymer-particle composites,” Rubber Chemistry and Technology, 81, 506–522 (2008).CrossRef C.G. Robertson and C.M. Roland, “Glass transition and interfacial segmental dynamics in polymer-particle composites,” Rubber Chemistry and Technology, 81, 506–522 (2008).CrossRef
217.
Zurück zum Zitat S.M. Aharoni, “Increased glass transition temperature in motionally constrained semicrystalline polymers,” Polym. Adv. Tech., 9, 169–201, (1998).CrossRef S.M. Aharoni, “Increased glass transition temperature in motionally constrained semicrystalline polymers,” Polym. Adv. Tech., 9, 169–201, (1998).CrossRef
218.
Zurück zum Zitat S. Ammanuel, A.M. Gaudette and S.S. Sternstein, “Enthalpic relaxation of silica-polyvinylacetate nanocomposites,” J. Polym. Sci. Part B: Polymer Physics, 46, 2733–2740 (2008).CrossRef S. Ammanuel, A.M. Gaudette and S.S. Sternstein, “Enthalpic relaxation of silica-polyvinylacetate nanocomposites,” J. Polym. Sci. Part B: Polymer Physics, 46, 2733–2740 (2008).CrossRef
219.
Zurück zum Zitat B. Haidar, H.Salah Deradji, A. Vidal and E. Papirer, “Physical aging phenomena in silica and glass beads filled elastomers (EPDM),” Macromol. Symp., 108, 147–161 (1996).CrossRef B. Haidar, H.Salah Deradji, A. Vidal and E. Papirer, “Physical aging phenomena in silica and glass beads filled elastomers (EPDM),” Macromol. Symp., 108, 147–161 (1996).CrossRef
220.
Zurück zum Zitat S.S. Sternstein and A.J. Zhu, “Reinforcement Mechanism of Nanofilled Polymer Melts As Elucidated by Nonlinear Viscoelastic Behavior,” Macromolecules, 35, 7262–7273 (2002).CrossRef S.S. Sternstein and A.J. Zhu, “Reinforcement Mechanism of Nanofilled Polymer Melts As Elucidated by Nonlinear Viscoelastic Behavior,” Macromolecules, 35, 72627273 (2002).CrossRef
221.
Zurück zum Zitat H. Montes, F. Lequeux and J. Berriot, “Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers,” Macromolecules, 36, 8107–8118 (2003).CrossRef H. Montes, F. Lequeux and J. Berriot, “Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers,” Macromolecules, 36, 8107–8118 (2003).CrossRef
222.
Zurück zum Zitat J. Jancar, “The Thickness Dependence of Elastic Modulus of Organosilane Interphases,” Polym. Comp., 29, 1372–1377 (2008).CrossRef J. Jancar, “The Thickness Dependence of Elastic Modulus of Organosilane Interphases,” Polym. Comp., 29, 1372–1377 (2008).CrossRef
223.
Zurück zum Zitat S. Merabia, P. Sotto and D.R. Long, “A Microscopic Model for the Reinforcement and the Nonlinear Behavior of Filled Elastomers and Thermoplastic Elastomers (Payne and Mullins Effects),” Macromolecules, 41, 8252–8266 (2008).CrossRef S. Merabia, P. Sotto and D.R. Long, “A Microscopic Model for the Reinforcement and the Nonlinear Behavior of Filled Elastomers and Thermoplastic Elastomers (Payne and Mullins Effects),” Macromolecules, 41, 8252–8266 (2008).CrossRef
Metadaten
Titel
Physical Aging in Glasses and Composites
verfasst von
Gregory B. McKenna
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-9308-3_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.