Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

Physical Foundations of Landauer’s Principle

verfasst von : Michael P. Frank

Erschienen in: Reversible Computation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We review the physical foundations of Landauer’s Principle, which relates the loss of information from a computational process to an increase in thermodynamic entropy. Despite the long history of the Principle, its fundamental rationale and proper interpretation remain frequently misunderstood. Contrary to some misinterpretations of the Principle, the mere transfer of entropy between computational and non-computational subsystems can occur in a thermodynamically reversible way without increasing total entropy. However, Landauer’s Principle is not about general entropy transfers; rather, it more specifically concerns the ejection of (all or part of) some correlated information from a controlled, digital form (e.g., a computed bit) to an uncontrolled, non-computational form, i.e., as part of a thermal environment. Any uncontrolled thermal system will, by definition, continually re-randomize the physical information in its thermal state, from our perspective as observers who cannot predict the exact dynamical evolution of the microstates of such environments. Thus, any correlations involving information that is ejected into and subsequently thermalized by the environment will be lost from our perspective, resulting directly in an irreversible increase in thermodynamic entropy. Avoiding the ejection and thermalization of correlated computational information motivates the reversible computing paradigm, although the requirements for computations to be thermodynamically reversible are less restrictive than frequently described, particularly in the case of stochastic computational operations. There are interesting possibilities for the design of computational processes that utilize stochastic, many-to-one computational operations while nevertheless avoiding net entropy increase that remain to be fully explored.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Boltzmann’s constant \(k_\mathrm {B}\approx 1.38 \times 10^{-23}\ \mathrm {J}/\mathrm {K}\), in traditional units. This constant was actually introduced by Planck in [2]. We discuss this history further in Sect. 3.1.
 
2
The mathematical fact, not initially fully understood by Landauer, that reversible computational processes can indeed avoid information loss was rigorously demonstrated by Bennett [3], using methods anticipated by Lecerf [4].
 
3
In this equation, W counts the number of distinct microstates consistent with a given macroscopic description of a system.
 
4
Intuitively, the more different values \(v_i\) there are, the more unlikely or improbable each individual value would seem to be, proportionally—not knowing anything else about the situation.
 
5
The rule that probabilities must always sum to 1 can be derived by considering the implications, under our definitions, of breaking down all possible events (regardless of their probability) into a set of equally-likely micro-alternatives; only the probability distributions that sum to 1 turn out to be epistemologically self-consistent in that scenario, but we will not detail that argument here.
 
6
I gave a detailed example of this information capacity relation (Eq. 8) in [22].
 
7
Note that this information-theoretic concept of correlation differs from, and is more generally applicable than, a statistical correlation coefficient between scalar numeric variables. General discrete variables do not require any numerical interpretation.
 
8
Shannon’s formula (our Eq. 4) for H is usually credited to him, but Shannon himself credits Boltzmann, the true originator of this concept.
 
9
A Hilbert space is a (typically) many-dimensional vector space equipped with an inner product operator, defined over a field that is usually the complex numbers \(\mathbb {C}\).
 
10
I.e., if \(S(\, \varPhi (s)\, |\, C(s)\, ) = \hat{S}(\,\varPhi (s)\,|\,C(s)\,))\), or in other words, if \(K(\varPhi (s)) = K(C(s))\), so we have no more knowledge about the physical state than the computational state.
 
Literatur
2.
Zurück zum Zitat Planck, M.: Ueber das Gesetz der Energieverteilung im normalspectrum. Annalen der Physik 309(3), 553–563 (1901)CrossRef Planck, M.: Ueber das Gesetz der Energieverteilung im normalspectrum. Annalen der Physik 309(3), 553–563 (1901)CrossRef
4.
Zurück zum Zitat Lecerf, Y.: Machines de Turing réversibles–Récursive insolubilité en \(n \in \rm N\) de l’equation \(u=\theta ^{n}u\), où \(\theta \) est un \(\ll \) isomorphisme de codes \(\gg \). Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences 257, 2597–2600 (1963) Lecerf, Y.: Machines de Turing réversibles–Récursive insolubilité en \(n \in \rm N\) de l’equation \(u=\theta ^{n}u\), où \(\theta \) est un \(\ll \) isomorphisme de codes \(\gg \). Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences 257, 2597–2600 (1963)
10.
Zurück zum Zitat Frank, M.P., DeBenedictis, E.P.: A novel operational paradigm for thermodynamically reversible logic: adiabatic transformation of chaotic nonlinear dynamical circuits. In: IEEE International Conference on Rebooting Computing (ICRC), San Diego, CA, October 2016. IEEE (2016). https://doi.org/10.1109/ICRC.2016.7738679 Frank, M.P., DeBenedictis, E.P.: A novel operational paradigm for thermodynamically reversible logic: adiabatic transformation of chaotic nonlinear dynamical circuits. In: IEEE International Conference on Rebooting Computing (ICRC), San Diego, CA, October 2016. IEEE (2016). https://​doi.​org/​10.​1109/​ICRC.​2016.​7738679
17.
Zurück zum Zitat Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, New York (1992) Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, New York (1992)
18.
Zurück zum Zitat Younis, S.G., Knight Jr., T.F.: Practical implementation of charge recovering asymptotically zero power CMOS. In: Borriello, G., Ebeling, C. (eds.) Research in Integrated Systems: Proceedings of the 1993 Symposium, Seattle, WA, February 1993, pp. 234–250. MIT Press (1993) Younis, S.G., Knight Jr., T.F.: Practical implementation of charge recovering asymptotically zero power CMOS. In: Borriello, G., Ebeling, C. (eds.) Research in Integrated Systems: Proceedings of the 1993 Symposium, Seattle, WA, February 1993, pp. 234–250. MIT Press (1993)
23.
Zurück zum Zitat Clausius, R.: On the motive power of heat, and on the laws which can be deduced from it for the theory of heat. Poggendorff’s Annalen der Physick, LXXIX (1850) Clausius, R.: On the motive power of heat, and on the laws which can be deduced from it for the theory of heat. Poggendorff’s Annalen der Physick, LXXIX (1850)
24.
Zurück zum Zitat Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte Akademie der Wissenschaften 66, 275–370 (1872)MATH Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte Akademie der Wissenschaften 66, 275–370 (1872)MATH
25.
Zurück zum Zitat Von Neumann, J.: Thermodynamik quantenmechanischer Gesamtheiten [Thermodynamics of Quantum Mechanical Quantities]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 102, 273–291 (1927)MATH Von Neumann, J.: Thermodynamik quantenmechanischer Gesamtheiten [Thermodynamics of Quantum Mechanical Quantities]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 102, 273–291 (1927)MATH
26.
Zurück zum Zitat Von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Julius Springer, Heidelberg (1932)MATH Von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Julius Springer, Heidelberg (1932)MATH
27.
Zurück zum Zitat Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)MATH Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)MATH
29.
Zurück zum Zitat Shannon, C.E.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)MATH Shannon, C.E.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)MATH
Metadaten
Titel
Physical Foundations of Landauer’s Principle
verfasst von
Michael P. Frank
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-99498-7_1