Skip to main content
Erschienen in: Metallurgist 9-10/2018

29.01.2018

Physical Modelling of Hot Rolling for Low-Density Alloy of the Al–Mg–Li–Zr–Zn–Sc System

verfasst von: Ya. A. Erisov, F. V. Grechnikov

Erschienen in: Metallurgist | Ausgabe 9-10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Results are given for physical modeling of hot rolling of alloy with reduced density of the Al–Mg–Li–Zr–Zn–Sc system (1424) in the temperature range 420–480° and deformation rate 1–40 sec–1. It is established that with a constant strain rate deformation stresses decrease with an increase in test temperature. An increase in strain rate leads to an increase in deformation stress at constant temperature. As a result of dynamic recovery and dynamic recrystallization, there is partial weakening of specimens accompanied by a reduction if deformation stress. Constants are determined for a rheological model of hot deformation, increase the Zener–Hollomon parameter and the rule of a hyperbolic sine: α = 0.023 MPа–1, n = 1.96, Q = 101.04 kJ/mole, А = 1.22·106 sec–1. It is shown that alloying with scandium reduces activation energy which leads to weak strain hardening and this means it provides good alloy 1424 production properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. N. Kablov, “Materials and chemical technologies for aircraft engineering,” Herald Russ. Acad. Sci., 82, No. 3, 158–167 (2012).CrossRef E. N. Kablov, “Materials and chemical technologies for aircraft engineering,” Herald Russ. Acad. Sci., 82, No. 3, 158–167 (2012).CrossRef
2.
Zurück zum Zitat L. B. Khokhlatova, N. I. Kolobnev, M. S. Oglodkov, and E. D. Mikhaylov, “Aluminum-lithium alloys for aircraft building,” Metallurgist, 56, No. 5–6, 336–341 (2012).CrossRef L. B. Khokhlatova, N. I. Kolobnev, M. S. Oglodkov, and E. D. Mikhaylov, “Aluminum-lithium alloys for aircraft building,” Metallurgist, 56, No. 5–6, 336–341 (2012).CrossRef
3.
Zurück zum Zitat M. A. Gureeva, O. E. Grushko, and V. V. Ovchinnikov, “Weldable aluminum alloys in means of transport structures,” Zagot. Proizv. Mashninostr., No. 3, 11–21 (2009). M. A. Gureeva, O. E. Grushko, and V. V. Ovchinnikov, “Weldable aluminum alloys in means of transport structures,” Zagot. Proizv. Mashninostr., No. 3, 11–21 (2009).
4.
Zurück zum Zitat R. J. Rioja and J. Liu, “The evolution of Al–Li base products for aerospace and space applications,” Metal. and Mater. Trans. A, 43A, 3325–3337 (2012).CrossRef R. J. Rioja and J. Liu, “The evolution of Al–Li base products for aerospace and space applications,” Metal. and Mater. Trans. A, 43A, 3325–3337 (2012).CrossRef
5.
Zurück zum Zitat V. I. Elagin and V. V. Zakharov, “Modern Al–Li alloys and prospects of their development,” Metal Sci. Heat Treat., 55, No. 3–4, 184–190 (2013).CrossRef V. I. Elagin and V. V. Zakharov, “Modern Al–Li alloys and prospects of their development,” Metal Sci. Heat Treat., 55, No. 3–4, 184–190 (2013).CrossRef
6.
Zurück zum Zitat N. I. Kolobnev, L. V. Khokhlatova, and V. V. Antipov, “Prospective cast aluminum alloys for aircraft structures,” Tekhnol. Legk. Splavov, No. 2, 35–38 (2007). N. I. Kolobnev, L. V. Khokhlatova, and V. V. Antipov, “Prospective cast aluminum alloys for aircraft structures,” Tekhnol. Legk. Splavov, No. 2, 35–38 (2007).
7.
Zurück zum Zitat Ya. A. Erisov, F. V. Grechnikov, and M. S. Oglodkov, “The infl uence of fabrication modes of sheets of V-1461 alloy on the structure crystallography and anisotropy of properties,” Russ. J. Non-Ferr. Met., 57, No. 1, 19–24 (2016).CrossRef Ya. A. Erisov, F. V. Grechnikov, and M. S. Oglodkov, “The infl uence of fabrication modes of sheets of V-1461 alloy on the structure crystallography and anisotropy of properties,” Russ. J. Non-Ferr. Met., 57, No. 1, 19–24 (2016).CrossRef
8.
Zurück zum Zitat I. N. Fridlyander, L. B. Khokhlatova, N. I. Kolobnev, et al., “Structural alloy 1424 with reduced density of the Al–Mg–Li–Zr–Zn–Sc system for welded and glued structures of aerospace technology,” Tekhnol. Legk. Splavov, No. 4, 20–23 (2002). I. N. Fridlyander, L. B. Khokhlatova, N. I. Kolobnev, et al., “Structural alloy 1424 with reduced density of the Al–Mg–Li–Zr–Zn–Sc system for welded and glued structures of aerospace technology,” Tekhnol. Legk. Splavov, No. 4, 20–23 (2002).
9.
Zurück zum Zitat L. B. Khokhlatova, V. I. Lukin, N. I. Kolobnev, et al., “Advanced aluminium-lithium 1420 alloy for welded structures for aerospace technology,” Weld. Int., 24, No. 10, 783–786 (2010).CrossRef L. B. Khokhlatova, V. I. Lukin, N. I. Kolobnev, et al., “Advanced aluminium-lithium 1420 alloy for welded structures for aerospace technology,” Weld. Int., 24, No. 10, 783–786 (2010).CrossRef
10.
Zurück zum Zitat I. N. Fridlyander, L. B. Khokhlatova, N. I. Kolobnev, et al., “Thermally stable aluminum-lithium alloy 1424 for application in welded fuselage,” Metal Sci. Heat Treat., 44, No. 1–2, 3–8 (2002).CrossRef I. N. Fridlyander, L. B. Khokhlatova, N. I. Kolobnev, et al., “Thermally stable aluminum-lithium alloy 1424 for application in welded fuselage,” Metal Sci. Heat Treat., 44, No. 1–2, 3–8 (2002).CrossRef
11.
Zurück zum Zitat A. A. Il’in, V. V. Zakharov, M. S. Betsofen, et al., “Texture and anisotropy of the mechanical properties of an Al–Mg–Li–Zn–Sc–Zr alloy,” Russ. Metallurgy (Metally), No. 5, 406–412 (2008). A. A. Il’in, V. V. Zakharov, M. S. Betsofen, et al., “Texture and anisotropy of the mechanical properties of an Al–Mg–Li–Zn–Sc–Zr alloy,” Russ. Metallurgy (Metally), No. 5, 406–412 (2008).
12.
Zurück zum Zitat L. B. Khokhlatova, N. I. Kolobnev, E. A. Lukina, and L. B. Ber, “Reduction of anisotropy in the sheets, made of the Al–Mg–Li–Zn-alloy 1424,” Tsvet. Met., No. 3, 78–81 (2013). L. B. Khokhlatova, N. I. Kolobnev, E. A. Lukina, and L. B. Ber, “Reduction of anisotropy in the sheets, made of the Al–Mg–Li–Zn-alloy 1424,” Tsvet. Met., No. 3, 78–81 (2013).
13.
Zurück zum Zitat I. N. Fridlyander, N. I. Kolobnev. L. B. Khokhlatova, et al., “Texture and grain structure of Al–Li–Mg–Zr–Sc alloy sheets,” Mater. Sci. Forum, 331–337, No. 2, 867–870 (2000).CrossRef I. N. Fridlyander, N. I. Kolobnev. L. B. Khokhlatova, et al., “Texture and grain structure of Al–Li–Mg–Zr–Sc alloy sheets,” Mater. Sci. Forum, 331–337, No. 2, 867–870 (2000).CrossRef
14.
Zurück zum Zitat L. B. Khokhlatova, N. I. Kolobnev, I. N. Fridlyander, et al., “Anisotropy decrease in sheets of 1424 Al–Mg–Li alloy,” Mater. Sci. Forum, 519–521, No. 1, 371–376 (2006).CrossRef L. B. Khokhlatova, N. I. Kolobnev, I. N. Fridlyander, et al., “Anisotropy decrease in sheets of 1424 Al–Mg–Li alloy,” Mater. Sci. Forum, 519–521, No. 1, 371–376 (2006).CrossRef
15.
Zurück zum Zitat Ni. I. Kolobnev, O. A. Setyukhov, L. B. Khkhlatova, and M. S. Oglodkov, “Effect of crystallographic orientation on properties fo a plate of Al–Li alloys B-1461 and 1424,” Tekhnol. Legk. Splavov, No. 1, 100–106 (2010). Ni. I. Kolobnev, O. A. Setyukhov, L. B. Khkhlatova, and M. S. Oglodkov, “Effect of crystallographic orientation on properties fo a plate of Al–Li alloys B-1461 and 1424,” Tekhnol. Legk. Splavov, No. 1, 100–106 (2010).
16.
Zurück zum Zitat G. V. Milevskaya, S. V. Rushchits, E. A. Tkachenko, and S. M. Antonov, “Deformation behavior of high-strength aluminum alloys under hot deformation conditions,” Aviats. Mater. Tekhnol., No. 2, 3–9 (2015). G. V. Milevskaya, S. V. Rushchits, E. A. Tkachenko, and S. M. Antonov, “Deformation behavior of high-strength aluminum alloys under hot deformation conditions,” Aviats. Mater. Tekhnol., No. 2, 3–9 (2015).
17.
Zurück zum Zitat Y. Chen, J. Li, H. Lu, et al., “Hot deformation behavior of Al–Cu–Li–Mg–Zr alloy containing Zn and Mn,” Trans. Nonferr. Met. Soc. China, 17, 271–275 (2007). Y. Chen, J. Li, H. Lu, et al., “Hot deformation behavior of Al–Cu–Li–Mg–Zr alloy containing Zn and Mn,” Trans. Nonferr. Met. Soc. China, 17, 271–275 (2007).
18.
Zurück zum Zitat L. Ou, Y. Nie, and Z. Zheng, “Strain compensation of the constitutive equation for high temperature fl ow stress of Al–Cu–Li alloy,” J. Mater. Eng. Perform., 23, No. 1, 25–30 (2014).CrossRef L. Ou, Y. Nie, and Z. Zheng, “Strain compensation of the constitutive equation for high temperature fl ow stress of Al–Cu–Li alloy,” J. Mater. Eng. Perform., 23, No. 1, 25–30 (2014).CrossRef
19.
Zurück zum Zitat X. Yu, Y. Zhang, D. Yin, et al., “Characterization of hot deformation behavior of a novel Al–Cu–Li alloy using processing maps,” Acta Metall. Sin. (Engl. Lett.), 28, No. 7, 817–825 (2015).CrossRef X. Yu, Y. Zhang, D. Yin, et al., “Characterization of hot deformation behavior of a novel Al–Cu–Li alloy using processing maps,” Acta Metall. Sin. (Engl. Lett.), 28, No. 7, 817–825 (2015).CrossRef
20.
Zurück zum Zitat H. J. McQueen, S. Spigarelli, M. E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, NY (2011). H. J. McQueen, S. Spigarelli, M. E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, NY (2011).
21.
Zurück zum Zitat N. G. Kolbasnikov, Laboratory “Research and Modeling of Structure and Properties of Metallic Materials,” Izd. SPb, GPU, St. Petersburg (2009). N. G. Kolbasnikov, Laboratory “Research and Modeling of Structure and Properties of Metallic Materials,” Izd. SPb, GPU, St. Petersburg (2009).
22.
Zurück zum Zitat N. I. Kolobnev, V. V. Antipov, V. V. Makhsidiv, et al., Patent 2486274 RF, IPC 7C22F1/05, C22F1/053, “Method for preparing sheet of aluminum alloys,” No. 2011141874/02, subm. 10.17.2011, publ. 06.27.2013, Byull., No. 18. N. I. Kolobnev, V. V. Antipov, V. V. Makhsidiv, et al., Patent 2486274 RF, IPC 7C22F1/05, C22F1/053, “Method for preparing sheet of aluminum alloys,” No. 2011141874/02, subm. 10.17.2011, publ. 06.27.2013, Byull., No. 18.
23.
Zurück zum Zitat A. I. Tselikov, P. I. Polukhin, V. M. Grebenik, et al., Metallurgical Plant Machines and Units: Textbook, Vol. 3, Machines and Units for Rolling, Metallurgiya, Moscow (1988). A. I. Tselikov, P. I. Polukhin, V. M. Grebenik, et al., Metallurgical Plant Machines and Units: Textbook, Vol. 3, Machines and Units for Rolling, Metallurgiya, Moscow (1988).
24.
Zurück zum Zitat H. Mirzadeh, J. C. Cabrera, and A. Najafizadeh, “Constitutive relationships for hot deformation of austenite,” Acta Mater., 59, 6441–6448 (2011).CrossRef H. Mirzadeh, J. C. Cabrera, and A. Najafizadeh, “Constitutive relationships for hot deformation of austenite,” Acta Mater., 59, 6441–6448 (2011).CrossRef
25.
Zurück zum Zitat H. J. McQueen and R. D. Ryan, “Constitutive analysis in hot working,” Mater. Sci. Eng. A, 322, 43–63 (2002).CrossRef H. J. McQueen and R. D. Ryan, “Constitutive analysis in hot working,” Mater. Sci. Eng. A, 322, 43–63 (2002).CrossRef
26.
Zurück zum Zitat J. Horsinka, J. Kliber, K. Drozd, and I. Mamuzic, “Approximation models of the stress-strain curve for deformation of aluminium alloys,” Metalurgija, 50, No. 2, 81–84 (2011). J. Horsinka, J. Kliber, K. Drozd, and I. Mamuzic, “Approximation models of the stress-strain curve for deformation of aluminium alloys,” Metalurgija, 50, No. 2, 81–84 (2011).
27.
Zurück zum Zitat Y. Peng, Z. Yin, B. Nie, and L. Zhong, “Effect of minor Sc and Zr on superplasticity of Al–Mg–Mn alloys,” Trans. Nonferr. Met. Soc. China, 17, 744–750 (2007).CrossRef Y. Peng, Z. Yin, B. Nie, and L. Zhong, “Effect of minor Sc and Zr on superplasticity of Al–Mg–Mn alloys,” Trans. Nonferr. Met. Soc. China, 17, 744–750 (2007).CrossRef
Metadaten
Titel
Physical Modelling of Hot Rolling for Low-Density Alloy of the Al–Mg–Li–Zr–Zn–Sc System
verfasst von
Ya. A. Erisov
F. V. Grechnikov
Publikationsdatum
29.01.2018
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 9-10/2018
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-018-0570-9

Weitere Artikel der Ausgabe 9-10/2018

Metallurgist 9-10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.